/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* $Id: TernaryTree.java 1616312 2014-08-06 19:19:31Z gadams $ */

package org.apache.fop.hyphenation;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Stack;

Ternary Search Tree.

A ternary search tree is a hibrid between a binary tree and a digital search tree (trie). Keys are limited to strings. A data value of type char is stored in each leaf node. It can be used as an index (or pointer) to the data. Branches that only contain one key are compressed to one node by storing a pointer to the trailer substring of the key. This class is intended to serve as base class or helper class to implement Dictionary collections or the like. Ternary trees have some nice properties as the following: the tree can be traversed in sorted order, partial matches (wildcard) can be implemented, retrieval of all keys within a given distance from the target, etc. The storage requirements are higher than a binary tree but a lot less than a trie. Performance is comparable with a hash table, sometimes it outperforms a hash function (most of the time can determine a miss faster than a hash).

The main purpose of this java port is to serve as a base for implementing TeX's hyphenation algorithm (see The TeXBook, appendix H). Each language requires from 5000 to 15000 hyphenation patterns which will be keys in this tree. The strings patterns are usually small (from 2 to 5 characters), but each char in the tree is stored in a node. Thus memory usage is the main concern. We will sacrify 'elegance' to keep memory requirements to the minimum. Using java's char type as pointer (yes, I know pointer it is a forbidden word in java) we can keep the size of the node to be just 8 bytes (3 pointers and the data char). This gives room for about 65000 nodes. In my tests the english patterns took 7694 nodes and the german patterns 10055 nodes, so I think we are safe.

All said, this is a map with strings as keys and char as value. Pretty limited!. It can be extended to a general map by using the string representation of an object and using the char value as an index to an array that contains the object values.

This work was authored by Carlos Villegas (cav@uniscope.co.jp).

/** * <h2>Ternary Search Tree.</h2> * * <p>A ternary search tree is a hibrid between a binary tree and * a digital search tree (trie). Keys are limited to strings. * A data value of type char is stored in each leaf node. * It can be used as an index (or pointer) to the data. * Branches that only contain one key are compressed to one node * by storing a pointer to the trailer substring of the key. * This class is intended to serve as base class or helper class * to implement Dictionary collections or the like. Ternary trees * have some nice properties as the following: the tree can be * traversed in sorted order, partial matches (wildcard) can be * implemented, retrieval of all keys within a given distance * from the target, etc. The storage requirements are higher than * a binary tree but a lot less than a trie. Performance is * comparable with a hash table, sometimes it outperforms a hash * function (most of the time can determine a miss faster than a hash).</p> * * <p>The main purpose of this java port is to serve as a base for * implementing TeX's hyphenation algorithm (see The TeXBook, * appendix H). Each language requires from 5000 to 15000 hyphenation * patterns which will be keys in this tree. The strings patterns * are usually small (from 2 to 5 characters), but each char in the * tree is stored in a node. Thus memory usage is the main concern. * We will sacrify 'elegance' to keep memory requirements to the * minimum. Using java's char type as pointer (yes, I know pointer * it is a forbidden word in java) we can keep the size of the node * to be just 8 bytes (3 pointers and the data char). This gives * room for about 65000 nodes. In my tests the english patterns * took 7694 nodes and the german patterns 10055 nodes, * so I think we are safe.</p> * * <p>All said, this is a map with strings as keys and char as value. * Pretty limited!. It can be extended to a general map by * using the string representation of an object and using the * char value as an index to an array that contains the object * values.</p> * * <p>This work was authored by Carlos Villegas (cav@uniscope.co.jp).</p> */
public class TernaryTree implements Cloneable, Serializable {
We use 4 arrays to represent a node. I guess I should have created a proper node class, but somehow Knuth's pascal code made me forget we now have a portable language with virtual memory management and automatic garbage collection! And now is kind of late, furthermore, if it ain't broken, don't fix it.
/** * We use 4 arrays to represent a node. I guess I should have created * a proper node class, but somehow Knuth's pascal code made me forget * we now have a portable language with virtual memory management and * automatic garbage collection! And now is kind of late, furthermore, * if it ain't broken, don't fix it. */
private static final long serialVersionUID = 3175412271203716160L;
Pointer to low branch and to rest of the key when it is stored directly in this node, we don't have unions in java!
/** * Pointer to low branch and to rest of the key when it is * stored directly in this node, we don't have unions in java! */
protected char[] lo;
Pointer to high branch.
/** * Pointer to high branch. */
protected char[] hi;
Pointer to equal branch and to data when this node is a string terminator.
/** * Pointer to equal branch and to data when this node is a string terminator. */
protected char[] eq;

The character stored in this node: splitchar. Two special values are reserved:

  • 0x0000 as string terminator
  • 0xFFFF to indicate that the branch starting at this node is compressed

This shouldn't be a problem if we give the usual semantics to strings since 0xFFFF is garanteed not to be an Unicode character.

/** * <P>The character stored in this node: splitchar. * Two special values are reserved:</P> * <ul><li>0x0000 as string terminator</li> * <li>0xFFFF to indicate that the branch starting at * this node is compressed</li></ul> * <p>This shouldn't be a problem if we give the usual semantics to * strings since 0xFFFF is garanteed not to be an Unicode character.</p> */
protected char[] sc;
This vector holds the trailing of the keys when the branch is compressed.
/** * This vector holds the trailing of the keys when the branch is compressed. */
protected CharVector kv;
root
/** root */
protected char root;
free node
/** free node */
protected char freenode;
number of items in tree
/** number of items in tree */
protected int length;
allocation size for arrays
/** allocation size for arrays */
protected static final int BLOCK_SIZE = 2048;
default constructor
/** default constructor */
TernaryTree() { init(); }
initialize
/** initialize */
protected void init() { root = 0; freenode = 1; length = 0; lo = new char[BLOCK_SIZE]; hi = new char[BLOCK_SIZE]; eq = new char[BLOCK_SIZE]; sc = new char[BLOCK_SIZE]; kv = new CharVector(); }
Branches are initially compressed, needing one node per key plus the size of the string key. They are decompressed as needed when another key with same prefix is inserted. This saves a lot of space, specially for long keys.
Params:
  • key – the key
  • val – a value
/** * Branches are initially compressed, needing * one node per key plus the size of the string * key. They are decompressed as needed when * another key with same prefix * is inserted. This saves a lot of space, * specially for long keys. * @param key the key * @param val a value */
public void insert(String key, char val) { // make sure we have enough room in the arrays int len = key.length() + 1; // maximum number of nodes that may be generated if (freenode + len > eq.length) { redimNodeArrays(eq.length + BLOCK_SIZE); } char[] strkey = new char[len--]; key.getChars(0, len, strkey, 0); strkey[len] = 0; root = insert(root, strkey, 0, val); }
Insert key.
Params:
  • key – the key
  • start – offset into key array
  • val – a value
/** * Insert key. * @param key the key * @param start offset into key array * @param val a value */
public void insert(char[] key, int start, char val) { int len = strlen(key) + 1; if (freenode + len > eq.length) { redimNodeArrays(eq.length + BLOCK_SIZE); } root = insert(root, key, start, val); }
The actual insertion function, recursive version.
/** * The actual insertion function, recursive version. */
private char insert(char p, char[] key, int start, char val) { int len = strlen(key, start); if (p == 0) { // this means there is no branch, this node will start a new branch. // Instead of doing that, we store the key somewhere else and create // only one node with a pointer to the key p = freenode++; eq[p] = val; // holds data length++; hi[p] = 0; if (len > 0) { sc[p] = 0xFFFF; // indicates branch is compressed lo[p] = (char)kv.alloc(len + 1); // use 'lo' to hold pointer to key strcpy(kv.getArray(), lo[p], key, start); } else { sc[p] = 0; lo[p] = 0; } return p; } if (sc[p] == 0xFFFF) { // branch is compressed: need to decompress // this will generate garbage in the external key array // but we can do some garbage collection later char pp = freenode++; lo[pp] = lo[p]; // previous pointer to key eq[pp] = eq[p]; // previous pointer to data lo[p] = 0; if (len > 0) { sc[p] = kv.get(lo[pp]); eq[p] = pp; lo[pp]++; if (kv.get(lo[pp]) == 0) { // key completly decompressed leaving garbage in key array lo[pp] = 0; sc[pp] = 0; hi[pp] = 0; } else { // we only got first char of key, rest is still there sc[pp] = 0xFFFF; } } else { // In this case we can save a node by swapping the new node // with the compressed node sc[pp] = 0xFFFF; hi[p] = pp; sc[p] = 0; eq[p] = val; length++; return p; } } char s = key[start]; if (s < sc[p]) { lo[p] = insert(lo[p], key, start, val); } else if (s == sc[p]) { if (s != 0) { eq[p] = insert(eq[p], key, start + 1, val); } else { // key already in tree, overwrite data eq[p] = val; } } else { hi[p] = insert(hi[p], key, start, val); } return p; }
Compares 2 null terminated char arrays
Params:
  • a – a character array
  • startA – an index into character array
  • b – a character array
  • startB – an index into character array
Returns:an integer
/** * Compares 2 null terminated char arrays * @param a a character array * @param startA an index into character array * @param b a character array * @param startB an index into character array * @return an integer */
public static int strcmp(char[] a, int startA, char[] b, int startB) { for (; a[startA] == b[startB]; startA++, startB++) { if (a[startA] == 0) { return 0; } } return a[startA] - b[startB]; }
Compares a string with null terminated char array
Params:
  • str – a string
  • a – a character array
  • start – an index into character array
Returns:an integer
/** * Compares a string with null terminated char array * @param str a string * @param a a character array * @param start an index into character array * @return an integer */
public static int strcmp(String str, char[] a, int start) { int i; int d; int len = str.length(); for (i = 0; i < len; i++) { d = (int)str.charAt(i) - a[start + i]; if (d != 0) { return d; } if (a[start + i] == 0) { return d; } } if (a[start + i] != 0) { return -a[start + i]; } return 0; }
Params:
  • dst – a character array
  • di – an index into character array
  • src – a character array
  • si – an index into character array
/** * @param dst a character array * @param di an index into character array * @param src a character array * @param si an index into character array */
public static void strcpy(char[] dst, int di, char[] src, int si) { while (src[si] != 0) { dst[di++] = src[si++]; } dst[di] = 0; }
Params:
  • a – a character array
  • start – an index into character array
Returns:an integer
/** * @param a a character array * @param start an index into character array * @return an integer */
public static int strlen(char[] a, int start) { int len = 0; for (int i = start; i < a.length && a[i] != 0; i++) { len++; } return len; }
Params:
  • a – a character array
Returns:an integer
/** * @param a a character array * @return an integer */
public static int strlen(char[] a) { return strlen(a, 0); }
Find key.
Params:
  • key – the key
Returns:result
/** * Find key. * @param key the key * @return result */
public int find(String key) { int len = key.length(); char[] strkey = new char[len + 1]; key.getChars(0, len, strkey, 0); strkey[len] = 0; return find(strkey, 0); }
Find key.
Params:
  • key – the key
  • start – offset into key array
Returns:result
/** * Find key. * @param key the key * @param start offset into key array * @return result */
public int find(char[] key, int start) { int d; char p = root; int i = start; char c; while (p != 0) { if (sc[p] == 0xFFFF) { if (strcmp(key, i, kv.getArray(), lo[p]) == 0) { return eq[p]; } else { return -1; } } c = key[i]; d = c - sc[p]; if (d == 0) { if (c == 0) { return eq[p]; } i++; p = eq[p]; } else if (d < 0) { p = lo[p]; } else { p = hi[p]; } } return -1; }
Params:
  • key – a key
Returns:trye if key present
/** * @param key a key * @return trye if key present */
public boolean knows(String key) { return (find(key) >= 0); } // redimension the arrays private void redimNodeArrays(int newsize) { int len = newsize < lo.length ? newsize : lo.length; char[] na = new char[newsize]; System.arraycopy(lo, 0, na, 0, len); lo = na; na = new char[newsize]; System.arraycopy(hi, 0, na, 0, len); hi = na; na = new char[newsize]; System.arraycopy(eq, 0, na, 0, len); eq = na; na = new char[newsize]; System.arraycopy(sc, 0, na, 0, len); sc = na; }
Returns:length
/** @return length */
public int size() { return length; }
{@inheritDoc}
/** {@inheritDoc} */
public Object clone() throws CloneNotSupportedException { TernaryTree t = (TernaryTree) super.clone(); t.lo = this.lo.clone(); t.hi = this.hi.clone(); t.eq = this.eq.clone(); t.sc = this.sc.clone(); t.kv = (CharVector)this.kv.clone(); return t; }
Recursively insert the median first and then the median of the lower and upper halves, and so on in order to get a balanced tree. The array of keys is assumed to be sorted in ascending order.
Params:
  • k – array of keys
  • v – array of values
  • offset – where to insert
  • n – count to insert
/** * Recursively insert the median first and then the median of the * lower and upper halves, and so on in order to get a balanced * tree. The array of keys is assumed to be sorted in ascending * order. * @param k array of keys * @param v array of values * @param offset where to insert * @param n count to insert */
protected void insertBalanced(String[] k, char[] v, int offset, int n) { int m; if (n < 1) { return; } m = n >> 1; insert(k[m + offset], v[m + offset]); insertBalanced(k, v, offset, m); insertBalanced(k, v, offset + m + 1, n - m - 1); }
Balance the tree for best search performance
/** * Balance the tree for best search performance */
public void balance() { // System.out.print("Before root splitchar = "); System.out.println(sc[root]); int i = 0; int n = length; String[] k = new String[n]; char[] v = new char[n]; Iterator iter = new Iterator(); while (iter.hasMoreElements()) { v[i] = iter.getValue(); k[i++] = (String)iter.nextElement(); } init(); insertBalanced(k, v, 0, n); // With uniform letter distribution sc[root] should be around 'm' // System.out.print("After root splitchar = "); System.out.println(sc[root]); }
Each node stores a character (splitchar) which is part of some key(s). In a compressed branch (one that only contain a single string key) the trailer of the key which is not already in nodes is stored externally in the kv array. As items are inserted, key substrings decrease. Some substrings may completely disappear when the whole branch is totally decompressed. The tree is traversed to find the key substrings actually used. In addition, duplicate substrings are removed using a map (implemented with a TernaryTree!).
/** * Each node stores a character (splitchar) which is part of * some key(s). In a compressed branch (one that only contain * a single string key) the trailer of the key which is not * already in nodes is stored externally in the kv array. * As items are inserted, key substrings decrease. * Some substrings may completely disappear when the whole * branch is totally decompressed. * The tree is traversed to find the key substrings actually * used. In addition, duplicate substrings are removed using * a map (implemented with a TernaryTree!). * */
public void trimToSize() { // first balance the tree for best performance balance(); // redimension the node arrays redimNodeArrays(freenode); // ok, compact kv array CharVector kx = new CharVector(); kx.alloc(1); TernaryTree map = new TernaryTree(); compact(kx, map, root); kv = kx; kv.trimToSize(); } private void compact(CharVector kx, TernaryTree map, char p) { int k; if (p == 0) { return; } if (sc[p] == 0xFFFF) { k = map.find(kv.getArray(), lo[p]); if (k < 0) { k = kx.alloc(strlen(kv.getArray(), lo[p]) + 1); strcpy(kx.getArray(), k, kv.getArray(), lo[p]); map.insert(kx.getArray(), k, (char)k); } lo[p] = (char)k; } else { compact(kx, map, lo[p]); if (sc[p] != 0) { compact(kx, map, eq[p]); } compact(kx, map, hi[p]); } }
Returns:the keys
/** @return the keys */
public Enumeration keys() { return new Iterator(); }
an iterator
/** an iterator */
public class Iterator implements Enumeration {
current node index
/** * current node index */
int cur;
current key
/** * current key */
String curkey; private class Item implements Cloneable {
parent
/** parent */
char parent;
child
/** child */
char child;
default constructor
/** default constructor */
public Item() { parent = 0; child = 0; }
Construct item.
Params:
  • p – a char
  • c – a char
/** * Construct item. * @param p a char * @param c a char */
public Item(char p, char c) { parent = p; child = c; }
{@inheritDoc}
/** {@inheritDoc} */
public Object clone() { return new Item(parent, child); } }
Node stack
/** * Node stack */
Stack ns;
key stack implemented with a StringBuffer
/** * key stack implemented with a StringBuffer */
StringBuffer ks;
default constructor
/** default constructor */
public Iterator() { cur = -1; ns = new Stack(); ks = new StringBuffer(); rewind(); }
rewind iterator
/** rewind iterator */
public void rewind() { ns.removeAllElements(); ks.setLength(0); cur = root; run(); }
Returns:next element
/** @return next element */
public Object nextElement() { String res = curkey; cur = up(); run(); return res; }
Returns:value
/** @return value */
public char getValue() { if (cur >= 0) { return eq[cur]; } return 0; }
Returns:true if more elements
/** @return true if more elements */
public boolean hasMoreElements() { return (cur != -1); }
traverse upwards
/** * traverse upwards */
private int up() { Item i = new Item(); int res = 0; if (ns.empty()) { return -1; } if (cur != 0 && sc[cur] == 0) { return lo[cur]; } boolean climb = true; while (climb) { i = (Item)ns.pop(); i.child++; switch (i.child) { case 1: if (sc[i.parent] != 0) { res = eq[i.parent]; ns.push(i.clone()); ks.append(sc[i.parent]); } else { i.child++; ns.push(i.clone()); res = hi[i.parent]; } climb = false; break; case 2: res = hi[i.parent]; ns.push(i.clone()); if (ks.length() > 0) { ks.setLength(ks.length() - 1); // pop } climb = false; break; default: if (ns.empty()) { return -1; } climb = true; break; } } return res; }
traverse the tree to find next key
/** * traverse the tree to find next key */
private int run() { if (cur == -1) { return -1; } boolean leaf = false; while (true) { // first go down on low branch until leaf or compressed branch while (cur != 0) { if (sc[cur] == 0xFFFF) { leaf = true; break; } ns.push(new Item((char)cur, '\u0000')); if (sc[cur] == 0) { leaf = true; break; } cur = lo[cur]; } if (leaf) { break; } // nothing found, go up one node and try again cur = up(); if (cur == -1) { return -1; } } // The current node should be a data node and // the key should be in the key stack (at least partially) StringBuffer buf = new StringBuffer(ks.toString()); if (sc[cur] == 0xFFFF) { int p = lo[cur]; while (kv.get(p) != 0) { buf.append(kv.get(p++)); } } curkey = buf.toString(); return 0; } }
Print stats (for testing).
/** * Print stats (for testing). */
public void printStats() { System.out.println("Number of keys = " + Integer.toString(length)); System.out.println("Node count = " + Integer.toString(freenode)); // System.out.println("Array length = " + Integer.toString(eq.length)); System.out.println("Key Array length = " + Integer.toString(kv.length())); /* * for(int i=0; i<kv.length(); i++) * if ( kv.get(i) != 0 ) * System.out.print(kv.get(i)); * else * System.out.println(""); * System.out.println("Keys:"); * for(Enumeration enum = keys(); enum.hasMoreElements(); ) * System.out.println(enum.nextElement()); */ }
Main entry point for testing.
Params:
  • args – not used
Throws:
/** * Main entry point for testing. * @param args not used * @throws Exception if not caught */
public static void main(String[] args) throws Exception { TernaryTree tt = new TernaryTree(); tt.insert("Carlos", 'C'); tt.insert("Car", 'r'); tt.insert("palos", 'l'); tt.insert("pa", 'p'); tt.trimToSize(); System.out.println((char)tt.find("Car")); System.out.println((char)tt.find("Carlos")); System.out.println((char)tt.find("alto")); tt.printStats(); } }