/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.spatial3d.geom;

import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;

3D rectangle, bounded on six sides by X,Y,Z limits, degenerate in X.
@lucene.internal
/** * 3D rectangle, bounded on six sides by X,Y,Z limits, degenerate in X. * * @lucene.internal */
class dXYZSolid extends BaseXYZSolid {
X
/** X */
protected final double X;
Min-Y
/** Min-Y */
protected final double minY;
Max-Y
/** Max-Y */
protected final double maxY;
Min-Z
/** Min-Z */
protected final double minZ;
Max-Z
/** Max-Z */
protected final double maxZ;
X plane
/** X plane */
protected final Plane xPlane;
Min-Y plane
/** Min-Y plane */
protected final SidedPlane minYPlane;
Max-Y plane
/** Max-Y plane */
protected final SidedPlane maxYPlane;
Min-Z plane
/** Min-Z plane */
protected final SidedPlane minZPlane;
Max-Z plane
/** Max-Z plane */
protected final SidedPlane maxZPlane;
These are the edge points of the shape, which are defined to be at least one point on each surface area boundary. In the case of a solid, this includes points which represent the intersection of XYZ bounding planes and the planet, as well as points representing the intersection of single bounding planes with the planet itself.
/** These are the edge points of the shape, which are defined to be at least one point on * each surface area boundary. In the case of a solid, this includes points which represent * the intersection of XYZ bounding planes and the planet, as well as points representing * the intersection of single bounding planes with the planet itself. */
protected final GeoPoint[] edgePoints;
Notable points for XPlane
/** Notable points for XPlane */
protected final GeoPoint[] notableXPoints;
Sole constructor
Params:
  • planetModel – is the planet model.
  • X – is the X value.
  • minY – is the minimum Y value.
  • maxY – is the maximum Y value.
  • minZ – is the minimum Z value.
  • maxZ – is the maximum Z value.
/** * Sole constructor * *@param planetModel is the planet model. *@param X is the X value. *@param minY is the minimum Y value. *@param maxY is the maximum Y value. *@param minZ is the minimum Z value. *@param maxZ is the maximum Z value. */
public dXYZSolid(final PlanetModel planetModel, final double X, final double minY, final double maxY, final double minZ, final double maxZ) { super(planetModel); // Argument checking if (maxY - minY < Vector.MINIMUM_RESOLUTION) throw new IllegalArgumentException("Y values in wrong order or identical"); if (maxZ - minZ < Vector.MINIMUM_RESOLUTION) throw new IllegalArgumentException("Z values in wrong order or identical"); this.X = X; this.minY = minY; this.maxY = maxY; this.minZ = minZ; this.maxZ = maxZ; final double worldMinX = planetModel.getMinimumXValue(); final double worldMaxX = planetModel.getMaximumXValue(); // Construct the planes xPlane = new Plane(xUnitVector,-X); minYPlane = new SidedPlane(0.0,maxY,0.0,yUnitVector,-minY); maxYPlane = new SidedPlane(0.0,minY,0.0,yUnitVector,-maxY); minZPlane = new SidedPlane(0.0,0.0,maxZ,zUnitVector,-minZ); maxZPlane = new SidedPlane(0.0,0.0,minZ,zUnitVector,-maxZ); // We need at least one point on the planet surface for each manifestation of the shape. // There can be up to 2 (on opposite sides of the world). But we have to go through // 4 combinations of adjacent planes in order to find out if any have 2 intersection solution. // Typically, this requires 4 square root operations. final GeoPoint[] XminY = xPlane.findIntersections(planetModel,minYPlane,maxYPlane,minZPlane,maxZPlane); final GeoPoint[] XmaxY = xPlane.findIntersections(planetModel,maxYPlane,minYPlane,minZPlane,maxZPlane); final GeoPoint[] XminZ = xPlane.findIntersections(planetModel,minZPlane,maxZPlane,minYPlane,maxYPlane); final GeoPoint[] XmaxZ = xPlane.findIntersections(planetModel,maxZPlane,minZPlane,minYPlane,maxYPlane); notableXPoints = glueTogether(XminY, XmaxY, XminZ, XmaxZ); // Now, compute the edge points. // This is the trickiest part of setting up an XYZSolid. We've computed intersections already, so // we'll start there. We know that at most there will be two disconnected shapes on the planet surface. // But there's also a case where exactly one plane slices through the world, and none of the bounding plane // intersections do. Thus, if we don't find any of the edge intersection cases, we have to look for that last case. // We need to look at single-plane/world intersections. // We detect these by looking at the world model and noting its x, y, and z bounds. // For the single-dimension degenerate case, there's really only one plane that can possibly intersect the world. // The cases we are looking for are when the four corner points for any given // plane are all outside of the world, AND that plane intersects the world. // There are four corner points all told; we must evaluate these WRT the planet surface. final boolean XminYminZ = planetModel.pointOutside(X, minY, minZ); final boolean XminYmaxZ = planetModel.pointOutside(X, minY, maxZ); final boolean XmaxYminZ = planetModel.pointOutside(X, maxY, minZ); final boolean XmaxYmaxZ = planetModel.pointOutside(X, maxY, maxZ); final GeoPoint[] xEdges; if (X - worldMinX >= -Vector.MINIMUM_RESOLUTION && X - worldMaxX <= Vector.MINIMUM_RESOLUTION && minY < 0.0 && maxY > 0.0 && minZ < 0.0 && maxZ > 0.0 && XminYminZ && XminYmaxZ && XmaxYminZ && XmaxYmaxZ) { // Find any point on the X plane that intersects the world // First construct a perpendicular plane that will allow us to find a sample point. // This plane is vertical and goes through the points (0,0,0) and (1,0,0) // Then use it to compute a sample point. final GeoPoint intPoint = xPlane.getSampleIntersectionPoint(planetModel, xVerticalPlane); if (intPoint != null) { xEdges = new GeoPoint[]{intPoint}; } else { xEdges = EMPTY_POINTS; } } else { xEdges = EMPTY_POINTS; } this.edgePoints = glueTogether(XminY,XmaxY,XminZ,XmaxZ,xEdges); }
Constructor for deserialization.
Params:
  • planetModel – is the planet model.
  • inputStream – is the input stream.
/** * Constructor for deserialization. * @param planetModel is the planet model. * @param inputStream is the input stream. */
public dXYZSolid(final PlanetModel planetModel, final InputStream inputStream) throws IOException { this(planetModel, SerializableObject.readDouble(inputStream), SerializableObject.readDouble(inputStream), SerializableObject.readDouble(inputStream), SerializableObject.readDouble(inputStream), SerializableObject.readDouble(inputStream)); } @Override public void write(final OutputStream outputStream) throws IOException { SerializableObject.writeDouble(outputStream, X); SerializableObject.writeDouble(outputStream, minY); SerializableObject.writeDouble(outputStream, maxY); SerializableObject.writeDouble(outputStream, minZ); SerializableObject.writeDouble(outputStream, maxZ); } @Override protected GeoPoint[] getEdgePoints() { return edgePoints; } @Override public boolean isWithin(final double x, final double y, final double z) { return xPlane.evaluateIsZero(x, y, z) && minYPlane.isWithin(x, y, z) && maxYPlane.isWithin(x, y, z) && minZPlane.isWithin(x, y, z) && maxZPlane.isWithin(x, y, z); } @Override public int getRelationship(final GeoShape path) { //System.err.println(this+" getrelationship with "+path); final int insideRectangle = isShapeInsideArea(path); if (insideRectangle == SOME_INSIDE) { //System.err.println(" some shape points inside area"); return OVERLAPS; } // Figure out if the entire XYZArea is contained by the shape. final int insideShape = isAreaInsideShape(path); if (insideShape == SOME_INSIDE) { //System.err.println(" some area points inside shape"); return OVERLAPS; } if (insideRectangle == ALL_INSIDE && insideShape == ALL_INSIDE) { //System.err.println(" inside of each other"); return OVERLAPS; } // The entire locus of points in this shape is on a single plane, so we only need ot look for an intersection with that plane. //System.err.println("xPlane = "+xPlane); if (path.intersects(xPlane, notableXPoints, minYPlane, maxYPlane, minZPlane, maxZPlane)) { //System.err.println(" edges intersect"); return OVERLAPS; } if (insideRectangle == ALL_INSIDE) { //System.err.println(" shape points inside area"); return WITHIN; } if (insideShape == ALL_INSIDE) { //System.err.println(" shape contains all area"); return CONTAINS; } //System.err.println(" disjoint"); return DISJOINT; } @Override public boolean equals(Object o) { if (!(o instanceof dXYZSolid)) return false; dXYZSolid other = (dXYZSolid) o; if (!super.equals(other)) { return false; } return other.xPlane.equals(xPlane) && other.minYPlane.equals(minYPlane) && other.maxYPlane.equals(maxYPlane) && other.minZPlane.equals(minZPlane) && other.maxZPlane.equals(maxZPlane); } @Override public int hashCode() { int result = super.hashCode(); result = 31 * result + xPlane.hashCode(); result = 31 * result + minYPlane.hashCode(); result = 31 * result + maxYPlane.hashCode(); result = 31 * result + minZPlane.hashCode(); result = 31 * result + maxZPlane.hashCode(); return result; } @Override public String toString() { return "dXYZSolid: {planetmodel="+planetModel+", xplane="+xPlane+", minYplane="+minYPlane+", maxYplane="+maxYPlane+", minZplane="+minZPlane+", maxZplane="+maxZPlane+"}"; } }