/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.spatial3d.geom;

We know about three kinds of planes. First kind: general plain through two points and origin Second kind: horizontal plane at specified height. Third kind: vertical plane with specified x and y value, through origin.
@lucene.experimental
/** * We know about three kinds of planes. First kind: general plain through two points and origin * Second kind: horizontal plane at specified height. Third kind: vertical plane with specified x and y value, through origin. * * @lucene.experimental */
public class Plane extends Vector {
An array with no points in it
/** An array with no points in it */
public final static GeoPoint[] NO_POINTS = new GeoPoint[0];
An array with no bounds in it
/** An array with no bounds in it */
public final static Membership[] NO_BOUNDS = new Membership[0];
A vertical plane normal to the Y axis
/** A vertical plane normal to the Y axis */
public final static Plane normalYPlane = new Plane(0.0,1.0,0.0,0.0);
A vertical plane normal to the X axis
/** A vertical plane normal to the X axis */
public final static Plane normalXPlane = new Plane(1.0,0.0,0.0,0.0);
A vertical plane normal to the Z axis
/** A vertical plane normal to the Z axis */
public final static Plane normalZPlane = new Plane(0.0,0.0,1.0,0.0);
Ax + By + Cz + D = 0
/** Ax + By + Cz + D = 0 */
public final double D;
Construct a plane with all four coefficients defined.
Params:
  • A – is A
  • B – is B
  • C – is C
  • D – is D
/** * Construct a plane with all four coefficients defined. *@param A is A *@param B is B *@param C is C *@param D is D */
public Plane(final double A, final double B, final double C, final double D) { super(A, B, C); this.D = D; }
Construct a plane through two points and origin.
Params:
  • A – is the first point (origin based).
  • BX – is the second point X (origin based).
  • BY – is the second point Y (origin based).
  • BZ – is the second point Z (origin based).
/** * Construct a plane through two points and origin. * * @param A is the first point (origin based). * @param BX is the second point X (origin based). * @param BY is the second point Y (origin based). * @param BZ is the second point Z (origin based). */
public Plane(final Vector A, final double BX, final double BY, final double BZ) { super(A, BX, BY, BZ); D = 0.0; }
Construct a plane through two points and origin.
Params:
  • A – is the first point (origin based).
  • B – is the second point (origin based).
/** * Construct a plane through two points and origin. * * @param A is the first point (origin based). * @param B is the second point (origin based). */
public Plane(final Vector A, final Vector B) { super(A, B); D = 0.0; }
Construct a horizontal plane at a specified Z.
Params:
  • planetModel – is the planet model.
  • sinLat – is the sin(latitude).
/** * Construct a horizontal plane at a specified Z. * * @param planetModel is the planet model. * @param sinLat is the sin(latitude). */
public Plane(final PlanetModel planetModel, final double sinLat) { super(0.0, 0.0, 1.0); D = -sinLat * computeDesiredEllipsoidMagnitude(planetModel, sinLat); }
Construct a vertical plane through a specified x, y and origin.
Params:
  • x – is the specified x value.
  • y – is the specified y value.
/** * Construct a vertical plane through a specified * x, y and origin. * * @param x is the specified x value. * @param y is the specified y value. */
public Plane(final double x, final double y) { super(y, -x, 0.0); D = 0.0; }
Construct a plane with a specific vector, and D offset from origin.
Params:
  • v – is the normal vector.
  • D – is the D offset from the origin.
/** * Construct a plane with a specific vector, and D offset * from origin. * @param v is the normal vector. * @param D is the D offset from the origin. */
public Plane(final Vector v, final double D) { super(v.x, v.y, v.z); this.D = D; }
Construct a plane that is parallel to the one provided, but which is just barely numerically distinguishable from it, in the direction desired.
Params:
  • basePlane – is the starting plane.
  • above – is set to true if the desired plane is in the positive direction from the base plane, or false in the negative direction.
/** Construct a plane that is parallel to the one provided, but which is just barely numerically * distinguishable from it, in the direction desired. * @param basePlane is the starting plane. * @param above is set to true if the desired plane is in the positive direction from the base plane, * or false in the negative direction. */
public Plane(final Plane basePlane, final boolean above) { this(basePlane.x, basePlane.y, basePlane.z, above?Math.nextUp(basePlane.D + MINIMUM_RESOLUTION):Math.nextDown(basePlane.D - MINIMUM_RESOLUTION)); }
Construct the most accurate normalized plane through an x-y point and including the Z axis. If none of the points can determine the plane, return null.
Params:
  • planePoints – is a set of points to choose from. The best one for constructing the most precise plane is picked.
Returns:the plane
/** Construct the most accurate normalized plane through an x-y point and including the Z axis. * If none of the points can determine the plane, return null. * @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked. * @return the plane */
public static Plane constructNormalizedZPlane(final Vector... planePoints) { // Pick the best one (with the greatest x-y distance) double bestDistance = 0.0; Vector bestPoint = null; for (final Vector point : planePoints) { final double pointDist = point.x * point.x + point.y * point.y; if (pointDist > bestDistance) { bestDistance = pointDist; bestPoint = point; } } return constructNormalizedZPlane(bestPoint.x, bestPoint.y); }
Construct the most accurate normalized plane through an x-z point and including the Y axis. If none of the points can determine the plane, return null.
Params:
  • planePoints – is a set of points to choose from. The best one for constructing the most precise plane is picked.
Returns:the plane
/** Construct the most accurate normalized plane through an x-z point and including the Y axis. * If none of the points can determine the plane, return null. * @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked. * @return the plane */
public static Plane constructNormalizedYPlane(final Vector... planePoints) { // Pick the best one (with the greatest x-z distance) double bestDistance = 0.0; Vector bestPoint = null; for (final Vector point : planePoints) { final double pointDist = point.x * point.x + point.z * point.z; if (pointDist > bestDistance) { bestDistance = pointDist; bestPoint = point; } } return constructNormalizedYPlane(bestPoint.x, bestPoint.z, 0.0); }
Construct the most accurate normalized plane through an y-z point and including the X axis. If none of the points can determine the plane, return null.
Params:
  • planePoints – is a set of points to choose from. The best one for constructing the most precise plane is picked.
Returns:the plane
/** Construct the most accurate normalized plane through an y-z point and including the X axis. * If none of the points can determine the plane, return null. * @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked. * @return the plane */
public static Plane constructNormalizedXPlane(final Vector... planePoints) { // Pick the best one (with the greatest y-z distance) double bestDistance = 0.0; Vector bestPoint = null; for (final Vector point : planePoints) { final double pointDist = point.y * point.y + point.z * point.z; if (pointDist > bestDistance) { bestDistance = pointDist; bestPoint = point; } } return constructNormalizedXPlane(bestPoint.y, bestPoint.z, 0.0); }
Construct a normalized plane through an x-y point and including the Z axis. If the x-y point is at (0,0), return null.
Params:
  • x – is the x value.
  • y – is the y value.
Returns:a plane passing through the Z axis and (x,y,0).
/** Construct a normalized plane through an x-y point and including the Z axis. * If the x-y point is at (0,0), return null. * @param x is the x value. * @param y is the y value. * @return a plane passing through the Z axis and (x,y,0). */
public static Plane constructNormalizedZPlane(final double x, final double y) { if (Math.abs(x) < MINIMUM_RESOLUTION && Math.abs(y) < MINIMUM_RESOLUTION) return null; final double denom = 1.0 / Math.sqrt(x*x + y*y); return new Plane(y * denom, -x * denom, 0.0, 0.0); }
Construct a normalized plane through an x-z point and parallel to the Y axis. If the x-z point is at (0,0), return null.
Params:
  • x – is the x value.
  • z – is the z value.
  • DValue – is the offset from the origin for the plane.
Returns:a plane parallel to the Y axis and perpendicular to the x and z values given.
/** Construct a normalized plane through an x-z point and parallel to the Y axis. * If the x-z point is at (0,0), return null. * @param x is the x value. * @param z is the z value. * @param DValue is the offset from the origin for the plane. * @return a plane parallel to the Y axis and perpendicular to the x and z values given. */
public static Plane constructNormalizedYPlane(final double x, final double z, final double DValue) { if (Math.abs(x) < MINIMUM_RESOLUTION && Math.abs(z) < MINIMUM_RESOLUTION) return null; final double denom = 1.0 / Math.sqrt(x*x + z*z); return new Plane(z * denom, 0.0, -x * denom, DValue); }
Construct a normalized plane through a y-z point and parallel to the X axis. If the y-z point is at (0,0), return null.
Params:
  • y – is the y value.
  • z – is the z value.
  • DValue – is the offset from the origin for the plane.
Returns:a plane parallel to the X axis and perpendicular to the y and z values given.
/** Construct a normalized plane through a y-z point and parallel to the X axis. * If the y-z point is at (0,0), return null. * @param y is the y value. * @param z is the z value. * @param DValue is the offset from the origin for the plane. * @return a plane parallel to the X axis and perpendicular to the y and z values given. */
public static Plane constructNormalizedXPlane(final double y, final double z, final double DValue) { if (Math.abs(y) < MINIMUM_RESOLUTION && Math.abs(z) < MINIMUM_RESOLUTION) return null; final double denom = 1.0 / Math.sqrt(y*y + z*z); return new Plane(0.0, z * denom, -y * denom, DValue); }
Evaluate the plane equation for a given point, as represented by a vector.
Params:
  • v – is the vector.
Returns:the result of the evaluation.
/** * Evaluate the plane equation for a given point, as represented * by a vector. * * @param v is the vector. * @return the result of the evaluation. */
public double evaluate(final Vector v) { return dotProduct(v) + D; }
Evaluate the plane equation for a given point, as represented by a vector.
Params:
  • x – is the x value.
  • y – is the y value.
  • z – is the z value.
Returns:the result of the evaluation.
/** * Evaluate the plane equation for a given point, as represented * by a vector. * @param x is the x value. * @param y is the y value. * @param z is the z value. * @return the result of the evaluation. */
public double evaluate(final double x, final double y, final double z) { return dotProduct(x, y, z) + D; }
Evaluate the plane equation for a given point, as represented by a vector.
Params:
  • v – is the vector.
Returns:true if the result is on the plane.
/** * Evaluate the plane equation for a given point, as represented * by a vector. * * @param v is the vector. * @return true if the result is on the plane. */
public boolean evaluateIsZero(final Vector v) { return Math.abs(evaluate(v)) < MINIMUM_RESOLUTION; }
Evaluate the plane equation for a given point, as represented by a vector.
Params:
  • x – is the x value.
  • y – is the y value.
  • z – is the z value.
Returns:true if the result is on the plane.
/** * Evaluate the plane equation for a given point, as represented * by a vector. * * @param x is the x value. * @param y is the y value. * @param z is the z value. * @return true if the result is on the plane. */
public boolean evaluateIsZero(final double x, final double y, final double z) { return Math.abs(evaluate(x, y, z)) < MINIMUM_RESOLUTION; }
Build a normalized plane, so that the vector is normalized.
Returns:the normalized plane object, or null if the plane is indeterminate.
/** * Build a normalized plane, so that the vector is normalized. * * @return the normalized plane object, or null if the plane is indeterminate. */
public Plane normalize() { Vector normVect = super.normalize(); if (normVect == null) return null; return new Plane(normVect, this.D); }
Compute arc distance from plane to a vector expressed with a GeoPoint. @see #arcDistance(PlanetModel, double, double, double, Membership...)
/** Compute arc distance from plane to a vector expressed with a {@link GeoPoint}. * @see #arcDistance(PlanetModel, double, double, double, Membership...) */
public double arcDistance(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) { return arcDistance(planetModel, v.x, v.y, v.z, bounds); }
Compute arc distance from plane to a vector.
Params:
  • planetModel – is the planet model.
  • x – is the x vector value.
  • y – is the y vector value.
  • z – is the z vector value.
  • bounds – are the bounds which constrain the intersection point.
Returns:the arc distance.
/** * Compute arc distance from plane to a vector. * @param planetModel is the planet model. * @param x is the x vector value. * @param y is the y vector value. * @param z is the z vector value. * @param bounds are the bounds which constrain the intersection point. * @return the arc distance. */
public double arcDistance(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) { if (evaluateIsZero(x,y,z)) { if (meetsAllBounds(x,y,z, bounds)) return 0.0; return Double.POSITIVE_INFINITY; } // First, compute the perpendicular plane. final Plane perpPlane = new Plane(this.y * z - this.z * y, this.z * x - this.x * z, this.x * y - this.y * x, 0.0); // We need to compute the intersection of two planes on the geo surface: this one, and its perpendicular. // Then, we need to choose which of the two points we want to compute the distance to. We pick the // shorter distance always. final GeoPoint[] intersectionPoints = findIntersections(planetModel, perpPlane); // For each point, compute a linear distance, and take the minimum of them double minDistance = Double.POSITIVE_INFINITY; for (final GeoPoint intersectionPoint : intersectionPoints) { if (meetsAllBounds(intersectionPoint, bounds)) { final double theDistance = intersectionPoint.arcDistance(x,y,z); if (theDistance < minDistance) { minDistance = theDistance; } } } return minDistance; }
Compute normal distance from plane to a vector.
Params:
  • v – is the vector.
  • bounds – are the bounds which constrain the intersection point.
Returns:the normal distance.
/** * Compute normal distance from plane to a vector. * @param v is the vector. * @param bounds are the bounds which constrain the intersection point. * @return the normal distance. */
public double normalDistance(final Vector v, final Membership... bounds) { return normalDistance(v.x, v.y, v.z, bounds); }
Compute normal distance from plane to a vector.
Params:
  • x – is the vector x.
  • y – is the vector y.
  • z – is the vector z.
  • bounds – are the bounds which constrain the intersection point.
Returns:the normal distance.
/** * Compute normal distance from plane to a vector. * @param x is the vector x. * @param y is the vector y. * @param z is the vector z. * @param bounds are the bounds which constrain the intersection point. * @return the normal distance. */
public double normalDistance(final double x, final double y, final double z, final Membership... bounds) { final double dist = evaluate(x,y,z); final double perpX = x - dist * this.x; final double perpY = y - dist * this.y; final double perpZ = z - dist * this.z; if (!meetsAllBounds(perpX, perpY, perpZ, bounds)) { return Double.POSITIVE_INFINITY; } return Math.abs(dist); }
Compute normal distance squared from plane to a vector.
Params:
  • v – is the vector.
  • bounds – are the bounds which constrain the intersection point.
Returns:the normal distance squared.
/** * Compute normal distance squared from plane to a vector. * @param v is the vector. * @param bounds are the bounds which constrain the intersection point. * @return the normal distance squared. */
public double normalDistanceSquared(final Vector v, final Membership... bounds) { return normalDistanceSquared(v.x, v.y, v.z, bounds); }
Compute normal distance squared from plane to a vector.
Params:
  • x – is the vector x.
  • y – is the vector y.
  • z – is the vector z.
  • bounds – are the bounds which constrain the intersection point.
Returns:the normal distance squared.
/** * Compute normal distance squared from plane to a vector. * @param x is the vector x. * @param y is the vector y. * @param z is the vector z. * @param bounds are the bounds which constrain the intersection point. * @return the normal distance squared. */
public double normalDistanceSquared(final double x, final double y, final double z, final Membership... bounds) { final double normal = normalDistance(x,y,z,bounds); if (normal == Double.POSITIVE_INFINITY) return normal; return normal * normal; }
Compute linear distance from plane to a vector. This is defined as the distance from the given point to the nearest intersection of this plane with the planet surface.
Params:
  • planetModel – is the planet model.
  • v – is the point.
  • bounds – are the bounds which constrain the intersection point.
Returns:the linear distance.
/** * Compute linear distance from plane to a vector. This is defined * as the distance from the given point to the nearest intersection of * this plane with the planet surface. * @param planetModel is the planet model. * @param v is the point. * @param bounds are the bounds which constrain the intersection point. * @return the linear distance. */
public double linearDistance(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) { return linearDistance(planetModel, v.x, v.y, v.z, bounds); }
Compute linear distance from plane to a vector. This is defined as the distance from the given point to the nearest intersection of this plane with the planet surface.
Params:
  • planetModel – is the planet model.
  • x – is the vector x.
  • y – is the vector y.
  • z – is the vector z.
  • bounds – are the bounds which constrain the intersection point.
Returns:the linear distance.
/** * Compute linear distance from plane to a vector. This is defined * as the distance from the given point to the nearest intersection of * this plane with the planet surface. * @param planetModel is the planet model. * @param x is the vector x. * @param y is the vector y. * @param z is the vector z. * @param bounds are the bounds which constrain the intersection point. * @return the linear distance. */
public double linearDistance(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) { if (evaluateIsZero(x,y,z)) { if (meetsAllBounds(x,y,z, bounds)) return 0.0; return Double.POSITIVE_INFINITY; } // First, compute the perpendicular plane. final Plane perpPlane = new Plane(this.y * z - this.z * y, this.z * x - this.x * z, this.x * y - this.y * x, 0.0); // We need to compute the intersection of two planes on the geo surface: this one, and its perpendicular. // Then, we need to choose which of the two points we want to compute the distance to. We pick the // shorter distance always. final GeoPoint[] intersectionPoints = findIntersections(planetModel, perpPlane); // For each point, compute a linear distance, and take the minimum of them double minDistance = Double.POSITIVE_INFINITY; for (final GeoPoint intersectionPoint : intersectionPoints) { if (meetsAllBounds(intersectionPoint, bounds)) { final double theDistance = intersectionPoint.linearDistance(x,y,z); if (theDistance < minDistance) { minDistance = theDistance; } } } return minDistance; }
Compute linear distance squared from plane to a vector. This is defined as the distance from the given point to the nearest intersection of this plane with the planet surface.
Params:
  • planetModel – is the planet model.
  • v – is the point.
  • bounds – are the bounds which constrain the intersection point.
Returns:the linear distance squared.
/** * Compute linear distance squared from plane to a vector. This is defined * as the distance from the given point to the nearest intersection of * this plane with the planet surface. * @param planetModel is the planet model. * @param v is the point. * @param bounds are the bounds which constrain the intersection point. * @return the linear distance squared. */
public double linearDistanceSquared(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) { return linearDistanceSquared(planetModel, v.x, v.y, v.z, bounds); }
Compute linear distance squared from plane to a vector. This is defined as the distance from the given point to the nearest intersection of this plane with the planet surface.
Params:
  • planetModel – is the planet model.
  • x – is the vector x.
  • y – is the vector y.
  • z – is the vector z.
  • bounds – are the bounds which constrain the intersection point.
Returns:the linear distance squared.
/** * Compute linear distance squared from plane to a vector. This is defined * as the distance from the given point to the nearest intersection of * this plane with the planet surface. * @param planetModel is the planet model. * @param x is the vector x. * @param y is the vector y. * @param z is the vector z. * @param bounds are the bounds which constrain the intersection point. * @return the linear distance squared. */
public double linearDistanceSquared(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) { final double linearDistance = linearDistance(planetModel, x, y, z, bounds); return linearDistance * linearDistance; }
Find points on the boundary of the intersection of a plane and the unit sphere, given a starting point, and ending point, and a list of proportions of the arc (e.g. 0.25, 0.5, 0.75). The angle between the starting point and ending point is assumed to be less than pi.
Params:
  • planetModel – is the planet model.
  • start – is the start point.
  • end – is the end point.
  • proportions – is an array of fractional proportions measured between start and end.
Returns:an array of points corresponding to the proportions passed in.
/** * Find points on the boundary of the intersection of a plane and the unit sphere, * given a starting point, and ending point, and a list of proportions of the arc (e.g. 0.25, 0.5, 0.75). * The angle between the starting point and ending point is assumed to be less than pi. * @param planetModel is the planet model. * @param start is the start point. * @param end is the end point. * @param proportions is an array of fractional proportions measured between start and end. * @return an array of points corresponding to the proportions passed in. */
public GeoPoint[] interpolate(final PlanetModel planetModel, final GeoPoint start, final GeoPoint end, final double[] proportions) { // Steps: // (1) Translate (x0,y0,z0) of endpoints into origin-centered place: // x1 = x0 + D*A // y1 = y0 + D*B // z1 = z0 + D*C // (2) Rotate counterclockwise in x-y: // ra = -atan2(B,A) // x2 = x1 cos ra - y1 sin ra // y2 = x1 sin ra + y1 cos ra // z2 = z1 // Faster: // cos ra = A/sqrt(A^2+B^2+C^2) // sin ra = -B/sqrt(A^2+B^2+C^2) // cos (-ra) = A/sqrt(A^2+B^2+C^2) // sin (-ra) = B/sqrt(A^2+B^2+C^2) // (3) Rotate clockwise in x-z: // ha = pi/2 - asin(C/sqrt(A^2+B^2+C^2)) // x3 = x2 cos ha - z2 sin ha // y3 = y2 // z3 = x2 sin ha + z2 cos ha // At this point, z3 should be zero. // Faster: // sin(ha) = cos(asin(C/sqrt(A^2+B^2+C^2))) = sqrt(1 - C^2/(A^2+B^2+C^2)) = sqrt(A^2+B^2)/sqrt(A^2+B^2+C^2) // cos(ha) = sin(asin(C/sqrt(A^2+B^2+C^2))) = C/sqrt(A^2+B^2+C^2) // (4) Compute interpolations by getting longitudes of original points // la = atan2(y3,x3) // (5) Rotate new points (xN0, yN0, zN0) counter-clockwise in x-z: // ha = -(pi - asin(C/sqrt(A^2+B^2+C^2))) // xN1 = xN0 cos ha - zN0 sin ha // yN1 = yN0 // zN1 = xN0 sin ha + zN0 cos ha // (6) Rotate new points clockwise in x-y: // ra = atan2(B,A) // xN2 = xN1 cos ra - yN1 sin ra // yN2 = xN1 sin ra + yN1 cos ra // zN2 = zN1 // (7) Translate new points: // xN3 = xN2 - D*A // yN3 = yN2 - D*B // zN3 = zN2 - D*C // First, calculate the angles and their sin/cos values double A = x; double B = y; double C = z; // Translation amounts final double transX = -D * A; final double transY = -D * B; final double transZ = -D * C; double cosRA; double sinRA; double cosHA; double sinHA; double magnitude = magnitude(); if (magnitude >= MINIMUM_RESOLUTION) { final double denom = 1.0 / magnitude; A *= denom; B *= denom; C *= denom; // cos ra = A/sqrt(A^2+B^2+C^2) // sin ra = -B/sqrt(A^2+B^2+C^2) // cos (-ra) = A/sqrt(A^2+B^2+C^2) // sin (-ra) = B/sqrt(A^2+B^2+C^2) final double xyMagnitude = Math.sqrt(A * A + B * B); if (xyMagnitude >= MINIMUM_RESOLUTION) { final double xyDenom = 1.0 / xyMagnitude; cosRA = A * xyDenom; sinRA = -B * xyDenom; } else { cosRA = 1.0; sinRA = 0.0; } // sin(ha) = cos(asin(C/sqrt(A^2+B^2+C^2))) = sqrt(1 - C^2/(A^2+B^2+C^2)) = sqrt(A^2+B^2)/sqrt(A^2+B^2+C^2) // cos(ha) = sin(asin(C/sqrt(A^2+B^2+C^2))) = C/sqrt(A^2+B^2+C^2) sinHA = xyMagnitude; cosHA = C; } else { cosRA = 1.0; sinRA = 0.0; cosHA = 1.0; sinHA = 0.0; } // Forward-translate the start and end points final Vector modifiedStart = modify(start, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA); final Vector modifiedEnd = modify(end, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA); if (Math.abs(modifiedStart.z) >= MINIMUM_RESOLUTION) throw new IllegalArgumentException("Start point was not on plane: " + modifiedStart.z); if (Math.abs(modifiedEnd.z) >= MINIMUM_RESOLUTION) throw new IllegalArgumentException("End point was not on plane: " + modifiedEnd.z); // Compute the angular distance between start and end point final double startAngle = Math.atan2(modifiedStart.y, modifiedStart.x); final double endAngle = Math.atan2(modifiedEnd.y, modifiedEnd.x); final double startMagnitude = Math.sqrt(modifiedStart.x * modifiedStart.x + modifiedStart.y * modifiedStart.y); double delta; double newEndAngle = endAngle; while (newEndAngle < startAngle) { newEndAngle += Math.PI * 2.0; } if (newEndAngle - startAngle <= Math.PI) { delta = newEndAngle - startAngle; } else { double newStartAngle = startAngle; while (newStartAngle < endAngle) { newStartAngle += Math.PI * 2.0; } delta = newStartAngle - endAngle; } final GeoPoint[] returnValues = new GeoPoint[proportions.length]; for (int i = 0; i < returnValues.length; i++) { final double newAngle = startAngle + proportions[i] * delta; final double sinNewAngle = Math.sin(newAngle); final double cosNewAngle = Math.cos(newAngle); final Vector newVector = new Vector(cosNewAngle * startMagnitude, sinNewAngle * startMagnitude, 0.0); returnValues[i] = reverseModify(planetModel, newVector, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA); } return returnValues; }
Modify a point to produce a vector in translated/rotated space.
Params:
  • start – is the start point.
  • transX – is the translation x value.
  • transY – is the translation y value.
  • transZ – is the translation z value.
  • sinRA – is the sine of the ascension angle.
  • cosRA – is the cosine of the ascension angle.
  • sinHA – is the sine of the height angle.
  • cosHA – is the cosine of the height angle.
Returns:the modified point.
/** * Modify a point to produce a vector in translated/rotated space. * @param start is the start point. * @param transX is the translation x value. * @param transY is the translation y value. * @param transZ is the translation z value. * @param sinRA is the sine of the ascension angle. * @param cosRA is the cosine of the ascension angle. * @param sinHA is the sine of the height angle. * @param cosHA is the cosine of the height angle. * @return the modified point. */
protected static Vector modify(final GeoPoint start, final double transX, final double transY, final double transZ, final double sinRA, final double cosRA, final double sinHA, final double cosHA) { return start.translate(transX, transY, transZ).rotateXY(sinRA, cosRA).rotateXZ(sinHA, cosHA); }
Reverse modify a point to produce a GeoPoint in normal space.
Params:
  • planetModel – is the planet model.
  • point – is the translated point.
  • transX – is the translation x value.
  • transY – is the translation y value.
  • transZ – is the translation z value.
  • sinRA – is the sine of the ascension angle.
  • cosRA – is the cosine of the ascension angle.
  • sinHA – is the sine of the height angle.
  • cosHA – is the cosine of the height angle.
Returns:the original point.
/** * Reverse modify a point to produce a GeoPoint in normal space. * @param planetModel is the planet model. * @param point is the translated point. * @param transX is the translation x value. * @param transY is the translation y value. * @param transZ is the translation z value. * @param sinRA is the sine of the ascension angle. * @param cosRA is the cosine of the ascension angle. * @param sinHA is the sine of the height angle. * @param cosHA is the cosine of the height angle. * @return the original point. */
protected static GeoPoint reverseModify(final PlanetModel planetModel, final Vector point, final double transX, final double transY, final double transZ, final double sinRA, final double cosRA, final double sinHA, final double cosHA) { final Vector result = point.rotateXZ(-sinHA, cosHA).rotateXY(-sinRA, cosRA).translate(-transX, -transY, -transZ); return planetModel.createSurfacePoint(result.x, result.y, result.z); }
Find the intersection points between two planes, given a set of bounds.
Params:
  • planetModel – is the planet model.
  • q – is the plane to intersect with.
  • bounds – are the bounds to consider to determine legal intersection points.
Returns:the set of legal intersection points, or null if the planes are numerically identical.
/** * Find the intersection points between two planes, given a set of bounds. * @param planetModel is the planet model. * @param q is the plane to intersect with. * @param bounds are the bounds to consider to determine legal intersection points. * @return the set of legal intersection points, or null if the planes are numerically identical. */
public GeoPoint[] findIntersections(final PlanetModel planetModel, final Plane q, final Membership... bounds) { if (isNumericallyIdentical(q)) { return null; } return findIntersections(planetModel, q, bounds, NO_BOUNDS); }
Find the points between two planes, where one plane crosses the other, given a set of bounds. Crossing is not just intersection; the planes cannot touch at just one point on the ellipsoid, but must cross at two.
Params:
  • planetModel – is the planet model.
  • q – is the plane to intersect with.
  • bounds – are the bounds to consider to determine legal intersection points.
Returns:the set of legal crossing points, or null if the planes are numerically identical.
/** * Find the points between two planes, where one plane crosses the other, given a set of bounds. * Crossing is not just intersection; the planes cannot touch at just one point on the ellipsoid, * but must cross at two. * * @param planetModel is the planet model. * @param q is the plane to intersect with. * @param bounds are the bounds to consider to determine legal intersection points. * @return the set of legal crossing points, or null if the planes are numerically identical. */
public GeoPoint[] findCrossings(final PlanetModel planetModel, final Plane q, final Membership... bounds) { if (isNumericallyIdentical(q)) { return null; } return findCrossings(planetModel, q, bounds, NO_BOUNDS); }
Checks if three points are coplanar in any of the three planes they can describe. The planes are all assumed to go through the origin.
Params:
  • A – The first point.
  • B – The second point.
  • C – The third point
Returns:true if provided points are coplanar in any of the three planes they can describe.
/** * Checks if three points are coplanar in any of the three planes they can describe. * The planes are all assumed to go through the origin. * * @param A The first point. * @param B The second point. * @param C The third point * @return true if provided points are coplanar in any of the three planes they can describe. */
public static boolean arePointsCoplanar(final GeoPoint A, final GeoPoint B, final GeoPoint C) { return Vector.crossProductEvaluateIsZero(A, B, C) || Vector.crossProductEvaluateIsZero(A, C, B) || Vector.crossProductEvaluateIsZero(B, C, A); }
Find the intersection points between two planes, given a set of bounds.
Params:
  • planetModel – is the planet model to use in finding points.
  • q – is the plane to intersect with.
  • bounds – is the set of bounds.
  • moreBounds – is another set of bounds.
Returns:the intersection point(s) on the unit sphere, if there are any.
/** * Find the intersection points between two planes, given a set of bounds. * * @param planetModel is the planet model to use in finding points. * @param q is the plane to intersect with. * @param bounds is the set of bounds. * @param moreBounds is another set of bounds. * @return the intersection point(s) on the unit sphere, if there are any. */
protected GeoPoint[] findIntersections(final PlanetModel planetModel, final Plane q, final Membership[] bounds, final Membership[] moreBounds) { //System.err.println("Looking for intersection between plane "+this+" and plane "+q+" within bounds"); // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes //System.err.println(" planes are parallel - no intersection"); return NO_POINTS; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) double x0; double y0; double z0; // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return NO_POINTS; } final double denom = 1.0 / denomYZ; x0 = 0.0; y0 = (-this.D * q.z - this.z * -q.D) * denom; z0 = (this.y * -q.D + this.D * q.y) * denom; } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return NO_POINTS; } final double denom = 1.0 / denomXZ; x0 = (-this.D * q.z - this.z * -q.D) * denom; y0 = 0.0; z0 = (this.x * -q.D + this.D * q.x) * denom; } else { // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return NO_POINTS; } final double denom = 1.0 / denomXY; x0 = (-this.D * q.y - this.y * -q.D) * denom; y0 = (this.x * -q.D + this.D * q.x) * denom; z0 = 0.0; } // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" One point of intersection"); final double inverse2A = 1.0 / (2.0 * A); // One solution only final double t = -B * inverse2A; // Maybe we can save ourselves the cost of construction of a point? final double pointX = lineVectorX * t + x0; final double pointY = lineVectorY * t + y0; final double pointZ = lineVectorZ * t + z0; for (final Membership bound : bounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return NO_POINTS; } } for (final Membership bound : moreBounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return NO_POINTS; } } return new GeoPoint[]{new GeoPoint(pointX, pointY, pointZ)}; } else if (BsquaredMinus > 0.0) { //System.err.println(" Two points of intersection"); final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; boolean point1Valid = true; boolean point2Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } if (point1Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } } for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } if (point2Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } } if (point1Valid && point2Valid) { return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z), new GeoPoint(point2X, point2Y, point2Z)}; } if (point1Valid) { return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z)}; } if (point2Valid) { return new GeoPoint[]{new GeoPoint(point2X, point2Y, point2Z)}; } return NO_POINTS; } else { //System.err.println(" no solutions - no intersection"); return NO_POINTS; } }
Find the points between two planes, where one plane crosses the other, given a set of bounds. Crossing is not just intersection; the planes cannot touch at just one point on the ellipsoid, but must cross at two.
Params:
  • planetModel – is the planet model to use in finding points.
  • q – is the plane to intersect with.
  • bounds – is the set of bounds.
  • moreBounds – is another set of bounds.
Returns:the intersection point(s) on the ellipsoid, if there are any.
/** * Find the points between two planes, where one plane crosses the other, given a set of bounds. * Crossing is not just intersection; the planes cannot touch at just one point on the ellipsoid, * but must cross at two. * * @param planetModel is the planet model to use in finding points. * @param q is the plane to intersect with. * @param bounds is the set of bounds. * @param moreBounds is another set of bounds. * @return the intersection point(s) on the ellipsoid, if there are any. */
protected GeoPoint[] findCrossings(final PlanetModel planetModel, final Plane q, final Membership[] bounds, final Membership[] moreBounds) { // This code in this method is very similar to findIntersections(), but eliminates the cases where // crossings are detected. // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes return NO_POINTS; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) double x0; double y0; double z0; // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { return NO_POINTS; } final double denom = 1.0 / denomYZ; x0 = 0.0; y0 = (-this.D * q.z - this.z * -q.D) * denom; z0 = (this.y * -q.D + this.D * q.y) * denom; } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { return NO_POINTS; } final double denom = 1.0 / denomXZ; x0 = (-this.D * q.z - this.z * -q.D) * denom; y0 = 0.0; z0 = (this.x * -q.D + this.D * q.x) * denom; } else { // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { return NO_POINTS; } final double denom = 1.0 / denomXY; x0 = (-this.D * q.y - this.y * -q.D) * denom; y0 = (this.x * -q.D + this.D * q.x) * denom; z0 = 0.0; } // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { // One point of intersection: cannot be a crossing. return NO_POINTS; } else if (BsquaredMinus > 0.0) { final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; boolean point1Valid = true; boolean point2Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } if (point1Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } } for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } if (point2Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } } if (point1Valid && point2Valid) { return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z), new GeoPoint(point2X, point2Y, point2Z)}; } if (point1Valid) { return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z)}; } if (point2Valid) { return new GeoPoint[]{new GeoPoint(point2X, point2Y, point2Z)}; } return NO_POINTS; } else { // No solutions. return NO_POINTS; } }
Record intersection points for planes with error bounds. This method calls the Bounds object with every intersection point it can find that matches the criteria. Each plane is considered to have two sides, one that is D + MINIMUM_RESOLUTION, and one that is D - MINIMUM_RESOLUTION. Both are examined and intersection points determined.
/** * Record intersection points for planes with error bounds. * This method calls the Bounds object with every intersection point it can find that matches the criteria. * Each plane is considered to have two sides, one that is D + MINIMUM_RESOLUTION, and one that is * D - MINIMUM_RESOLUTION. Both are examined and intersection points determined. */
protected void findIntersectionBounds(final PlanetModel planetModel, final Bounds boundsInfo, final Plane q, final Membership... bounds) { //System.out.println("Finding intersection bounds"); // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes //System.out.println(" planes are parallel - no intersection"); return; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { //System.out.println("X biggest"); // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { //System.out.println(" Denominator is zero: no intersection"); return; } final double denom = 1.0 / denomYZ; // Each value of D really is two values of D. That makes 4 combinations. recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, 0.0, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.y) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, 0.0, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.y) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, 0.0, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.y) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, 0.0, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.y) * denom, bounds); } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { //System.out.println("Y biggest"); // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { //System.out.println(" Denominator is zero: no intersection"); return; } final double denom = 1.0 / denomXZ; recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, bounds); } else { //System.out.println("Z biggest"); // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { //System.out.println(" Denominator is zero: no intersection"); return; } final double denom = 1.0 / denomXY; recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D+MINIMUM_RESOLUTION) * q.y - this.y * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, 0.0, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D-MINIMUM_RESOLUTION) * q.y - this.y * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, 0.0, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D+MINIMUM_RESOLUTION) * q.y - this.y * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, 0.0, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D-MINIMUM_RESOLUTION) * q.y - this.y * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, 0.0, bounds); } } private static void recordLineBounds(final PlanetModel planetModel, final Bounds boundsInfo, final double lineVectorX, final double lineVectorY, final double lineVectorZ, final double x0, final double y0, final double z0, final Membership... bounds) { // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" One point of intersection"); final double inverse2A = 1.0 / (2.0 * A); // One solution only final double t = -B * inverse2A; // Maybe we can save ourselves the cost of construction of a point? final double pointX = lineVectorX * t + x0; final double pointY = lineVectorY * t + y0; final double pointZ = lineVectorZ * t + z0; for (final Membership bound : bounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return; } } boundsInfo.addPoint(new GeoPoint(pointX, pointY, pointZ)); } else if (BsquaredMinus > 0.0) { //System.err.println(" Two points of intersection"); final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; boolean point1Valid = true; boolean point2Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } if (point1Valid) { boundsInfo.addPoint(new GeoPoint(point1X, point1Y, point1Z)); } if (point2Valid) { boundsInfo.addPoint(new GeoPoint(point2X, point2Y, point2Z)); } } else { // If we can't intersect line with world, then it's outside the world, so // we have to assume everything is included. boundsInfo.noBound(planetModel); } } /* protected void verifyPoint(final PlanetModel planetModel, final GeoPoint point, final Plane q) { if (!evaluateIsZero(point)) throw new RuntimeException("Intersection point not on original plane; point="+point+", plane="+this); if (!q.evaluateIsZero(point)) throw new RuntimeException("Intersection point not on intersected plane; point="+point+", plane="+q); if (Math.abs(point.x * point.x * planetModel.inverseASquared + point.y * point.y * planetModel.inverseBSquared + point.z * point.z * planetModel.inverseCSquared - 1.0) >= MINIMUM_RESOLUTION) throw new RuntimeException("Intersection point not on ellipsoid; point="+point); } */
Accumulate (x,y,z) bounds information for this plane, intersected with another and the world. Updates min/max information using intersection points found. These include the error envelope for the planes (D +/- MINIMUM_RESOLUTION).
Params:
  • planetModel – is the planet model to use in determining bounds.
  • boundsInfo – is the xyz info to update with additional bounding information.
  • p – is the other plane.
  • bounds – are the surfaces delineating what's inside the shape.
/** * Accumulate (x,y,z) bounds information for this plane, intersected with another and the * world. * Updates min/max information using intersection points found. These include the error * envelope for the planes (D +/- MINIMUM_RESOLUTION). * @param planetModel is the planet model to use in determining bounds. * @param boundsInfo is the xyz info to update with additional bounding information. * @param p is the other plane. * @param bounds are the surfaces delineating what's inside the shape. */
public void recordBounds(final PlanetModel planetModel, final XYZBounds boundsInfo, final Plane p, final Membership... bounds) { findIntersectionBounds(planetModel, boundsInfo, p, bounds); }
Accumulate (x,y,z) bounds information for this plane, intersected with the unit sphere. Updates min/max information, using max/min points found within the specified bounds.
Params:
  • planetModel – is the planet model to use in determining bounds.
  • boundsInfo – is the xyz info to update with additional bounding information.
  • bounds – are the surfaces delineating what's inside the shape.
/** * Accumulate (x,y,z) bounds information for this plane, intersected with the unit sphere. * Updates min/max information, using max/min points found * within the specified bounds. * * @param planetModel is the planet model to use in determining bounds. * @param boundsInfo is the xyz info to update with additional bounding information. * @param bounds are the surfaces delineating what's inside the shape. */
public void recordBounds(final PlanetModel planetModel, final XYZBounds boundsInfo, final Membership... bounds) { // Basic plan is to do three intersections of the plane and the planet. // For min/max x, we intersect a vertical plane such that y = 0. // For min/max y, we intersect a vertical plane such that x = 0. // For min/max z, we intersect a vertical plane that is chosen to go through the high point of the arc. // For clarity, load local variables with good names final double A = this.x; final double B = this.y; final double C = this.z; // Do Z. This can be done simply because it is symmetrical. if (!boundsInfo.isSmallestMinZ(planetModel) || !boundsInfo.isLargestMaxZ(planetModel)) { //System.err.println(" computing Z bound"); // Compute Z bounds for this arc // With ellipsoids, we really have only one viable way to do this computation. // Specifically, we compute an appropriate vertical plane, based on the current plane's x-y orientation, and // then intersect it with this one and with the ellipsoid. This gives us zero, one, or two points to use // as bounds. // There is one special case: horizontal circles. These require TWO vertical planes: one for the x, and one for // the y, and we use all four resulting points in the bounds computation. if ((Math.abs(A) >= MINIMUM_RESOLUTION || Math.abs(B) >= MINIMUM_RESOLUTION)) { // NOT a degenerate case //System.err.println(" not degenerate"); final Plane normalizedZPlane = constructNormalizedZPlane(A,B); final GeoPoint[] points = findIntersections(planetModel, normalizedZPlane, bounds, NO_BOUNDS); for (final GeoPoint point : points) { assert planetModel.pointOnSurface(point); //System.err.println(" Point = "+point+"; this.evaluate(point)="+this.evaluate(point)+"; normalizedZPlane.evaluate(point)="+normalizedZPlane.evaluate(point)); addPoint(boundsInfo, bounds, point); } } else { // Since a==b==0, any plane including the Z axis suffices. //System.err.println(" Perpendicular to z"); final GeoPoint[] points = findIntersections(planetModel, normalYPlane, NO_BOUNDS, NO_BOUNDS); if (points.length > 0) { boundsInfo.addZValue(points[0]); } } } // First, compute common subexpressions final double k = 1.0 / ((x*x + y*y)*planetModel.ab*planetModel.ab + z*z*planetModel.c*planetModel.c); final double abSquared = planetModel.ab * planetModel.ab; final double cSquared = planetModel.c * planetModel.c; final double ASquared = A * A; final double BSquared = B * B; final double CSquared = C * C; final double r = 2.0*D*k; final double rSquared = r * r; if (!boundsInfo.isSmallestMinX(planetModel) || !boundsInfo.isLargestMaxX(planetModel)) { // For min/max x, we need to use lagrange multipliers. // // For this, we need grad(F(x,y,z)) = (dF/dx, dF/dy, dF/dz). // // Minimize and maximize f(x,y,z) = x, with respect to g(x,y,z) = Ax + By + Cz - D and h(x,y,z) = x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 // // grad(f(x,y,z)) = (1,0,0) // grad(g(x,y,z)) = (A,B,C) // grad(h(x,y,z)) = (2x/ab^2,2y/ab^2,2z/c^2) // // Equations we need to simultaneously solve: // // grad(f(x,y,z)) = l * grad(g(x,y,z)) + m * grad(h(x,y,z)) // g(x,y,z) = 0 // h(x,y,z) = 0 // // Equations: // 1 = l*A + m*2x/ab^2 // 0 = l*B + m*2y/ab^2 // 0 = l*C + m*2z/c^2 // Ax + By + Cz + D = 0 // x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 = 0 // // Solve for x,y,z in terms of (l, m): // // x = ((1 - l*A) * ab^2 ) / (2 * m) // y = (-l*B * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) // // Two equations, two unknowns: // // A * (((1 - l*A) * ab^2 ) / (2 * m)) + B * ((-l*B * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0 // // and // // (((1 - l*A) * ab^2 ) / (2 * m))^2/ab^2 + ((-l*B * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0 // // Simple: solve for l and m, then find x from it. // // (a) Use first equation to find l in terms of m. // // A * (((1 - l*A) * ab^2 ) / (2 * m)) + B * ((-l*B * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0 // A * ((1 - l*A) * ab^2 ) + B * (-l*B * ab^2) + C * (-l*C * c^2) + D * 2 * m = 0 // A * ab^2 - l*A^2* ab^2 - B^2 * l * ab^2 - C^2 * l * c^2 + D * 2 * m = 0 // - l *(A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + (A * ab^2 + D * 2 * m) = 0 // l = (A * ab^2 + D * 2 * m) / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // l = A * ab^2 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + m * 2 * D / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // // For convenience: // // k = 1.0 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // // Then: // // l = A * ab^2 * k + m * 2 * D * k // l = k * (A*ab^2 + m*2*D) // // For further convenience: // // q = A*ab^2*k // r = 2*D*k // // l = (r*m + q) // l^2 = (r^2 * m^2 + 2*r*m*q + q^2) // // (b) Simplify the second equation before substitution // // (((1 - l*A) * ab^2 ) / (2 * m))^2/ab^2 + ((-l*B * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0 // ((1 - l*A) * ab^2 )^2/ab^2 + (-l*B * ab^2)^2/ab^2 + (-l*C * c^2)^2/c^2 = 4 * m^2 // (1 - l*A)^2 * ab^2 + (-l*B)^2 * ab^2 + (-l*C)^2 * c^2 = 4 * m^2 // (1 - 2*l*A + l^2*A^2) * ab^2 + l^2*B^2 * ab^2 + l^2*C^2 * c^2 = 4 * m^2 // ab^2 - 2*A*ab^2*l + A^2*ab^2*l^2 + B^2*ab^2*l^2 + C^2*c^2*l^2 - 4*m^2 = 0 // // (c) Substitute for l, l^2 // // ab^2 - 2*A*ab^2*(r*m + q) + A^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + B^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + C^2*c^2*(r^2 * m^2 + 2*r*m*q + q^2) - 4*m^2 = 0 // ab^2 - 2*A*ab^2*r*m - 2*A*ab^2*q + A^2*ab^2*r^2*m^2 + 2*A^2*ab^2*r*q*m + // A^2*ab^2*q^2 + B^2*ab^2*r^2*m^2 + 2*B^2*ab^2*r*q*m + B^2*ab^2*q^2 + C^2*c^2*r^2*m^2 + 2*C^2*c^2*r*q*m + C^2*c^2*q^2 - 4*m^2 = 0 // // (d) Group // // m^2 * [A^2*ab^2*r^2 + B^2*ab^2*r^2 + C^2*c^2*r^2 - 4] + // m * [- 2*A*ab^2*r + 2*A^2*ab^2*r*q + 2*B^2*ab^2*r*q + 2*C^2*c^2*r*q] + // [ab^2 - 2*A*ab^2*q + A^2*ab^2*q^2 + B^2*ab^2*q^2 + C^2*c^2*q^2] = 0 // Useful subexpressions for this bound final double q = A*abSquared*k; final double qSquared = q * q; // Quadratic equation final double a = ASquared*abSquared*rSquared + BSquared*abSquared*rSquared + CSquared*cSquared*rSquared - 4.0; final double b = - 2.0*A*abSquared*r + 2.0*ASquared*abSquared*r*q + 2.0*BSquared*abSquared*r*q + 2.0*CSquared*cSquared*r*q; final double c = abSquared - 2.0*A*abSquared*q + ASquared*abSquared*qSquared + BSquared*abSquared*qSquared + CSquared*cSquared*qSquared; if (Math.abs(a) >= MINIMUM_RESOLUTION_SQUARED) { final double sqrtTerm = b*b - 4.0*a*c; if (Math.abs(sqrtTerm) < MINIMUM_RESOLUTION_SQUARED) { // One solution final double m = -b / (2.0 * a); // Valid? if (Math.abs(m) >= MINIMUM_RESOLUTION) { final double l = r * m + q; // x = ((1 - l*A) * ab^2 ) / (2 * m) // y = (-l*B * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom0 = 0.5 / m; final GeoPoint thePoint = new GeoPoint((1.0-l*A) * abSquared * denom0, -l*B * abSquared * denom0, -l*C * cSquared * denom0); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint); addPoint(boundsInfo, bounds, thePoint); } else { // This is a plane of the form A=n B=0 C=0. We can set a bound only by noting the D value. boundsInfo.addXValue(-D/A); } } else if (sqrtTerm > 0.0) { // Two solutions final double sqrtResult = Math.sqrt(sqrtTerm); final double commonDenom = 0.5/a; final double m1 = (-b + sqrtResult) * commonDenom; assert Math.abs(a * m1 * m1 + b * m1 + c) < MINIMUM_RESOLUTION; final double m2 = (-b - sqrtResult) * commonDenom; assert Math.abs(a * m2 * m2 + b * m2 + c) < MINIMUM_RESOLUTION; if (Math.abs(m1) >= MINIMUM_RESOLUTION || Math.abs(m2) >= MINIMUM_RESOLUTION) { final double l1 = r * m1 + q; final double l2 = r * m2 + q; // x = ((1 - l*A) * ab^2 ) / (2 * m) // y = (-l*B * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom1 = 0.5 / m1; final double denom2 = 0.5 / m2; final GeoPoint thePoint1 = new GeoPoint((1.0-l1*A) * abSquared * denom1, -l1*B * abSquared * denom1, -l1*C * cSquared * denom1); final GeoPoint thePoint2 = new GeoPoint((1.0-l2*A) * abSquared * denom2, -l2*B * abSquared * denom2, -l2*C * cSquared * denom2); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint1): "Point1: "+thePoint1+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint1.x*thePoint1.x*planetModel.inverseAb*planetModel.inverseAb + thePoint1.y*thePoint1.y*planetModel.inverseAb*planetModel.inverseAb + thePoint1.z*thePoint1.z*planetModel.inverseC*planetModel.inverseC); //assert planetModel.pointOnSurface(thePoint2): "Point1: "+thePoint2+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint2.x*thePoint2.x*planetModel.inverseAb*planetModel.inverseAb + thePoint2.y*thePoint2.y*planetModel.inverseAb*planetModel.inverseAb + thePoint2.z*thePoint2.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint1): "Evaluation of point1: "+evaluate(thePoint1); //assert evaluateIsZero(thePoint2): "Evaluation of point2: "+evaluate(thePoint2); addPoint(boundsInfo, bounds, thePoint1); addPoint(boundsInfo, bounds, thePoint2); } else { // This is a plane of the form A=n B=0 C=0. We can set a bound only by noting the D value. boundsInfo.addXValue(-D/A); } } else { // No solutions } } else if (Math.abs(b) > MINIMUM_RESOLUTION_SQUARED) { // a = 0, so m = - c / b final double m = -c / b; final double l = r * m + q; // x = ((1 - l*A) * ab^2 ) / (2 * m) // y = (-l*B * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom0 = 0.5 / m; final GeoPoint thePoint = new GeoPoint((1.0-l*A) * abSquared * denom0, -l*B * abSquared * denom0, -l*C * cSquared * denom0); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint); addPoint(boundsInfo, bounds, thePoint); } else { // Something went very wrong; a = b = 0 } } // Do Y if (!boundsInfo.isSmallestMinY(planetModel) || !boundsInfo.isLargestMaxY(planetModel)) { // For min/max x, we need to use lagrange multipliers. // // For this, we need grad(F(x,y,z)) = (dF/dx, dF/dy, dF/dz). // // Minimize and maximize f(x,y,z) = y, with respect to g(x,y,z) = Ax + By + Cz - D and h(x,y,z) = x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 // // grad(f(x,y,z)) = (0,1,0) // grad(g(x,y,z)) = (A,B,C) // grad(h(x,y,z)) = (2x/ab^2,2y/ab^2,2z/c^2) // // Equations we need to simultaneously solve: // // grad(f(x,y,z)) = l * grad(g(x,y,z)) + m * grad(h(x,y,z)) // g(x,y,z) = 0 // h(x,y,z) = 0 // // Equations: // 0 = l*A + m*2x/ab^2 // 1 = l*B + m*2y/ab^2 // 0 = l*C + m*2z/c^2 // Ax + By + Cz + D = 0 // x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 = 0 // // Solve for x,y,z in terms of (l, m): // // x = (-l*A * ab^2 ) / (2 * m) // y = ((1 - l*B) * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) // // Two equations, two unknowns: // // A * ((-l*A * ab^2 ) / (2 * m)) + B * (((1 - l*B) * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0 // // and // // ((-l*A * ab^2 ) / (2 * m))^2/ab^2 + (((1 - l*B) * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0 // // Simple: solve for l and m, then find y from it. // // (a) Use first equation to find l in terms of m. // // A * ((-l*A * ab^2 ) / (2 * m)) + B * (((1 - l*B) * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0 // A * (-l*A * ab^2 ) + B * ((1-l*B) * ab^2) + C * (-l*C * c^2) + D * 2 * m = 0 // -A^2*l*ab^2 + B*ab^2 - l*B^2*ab^2 - C^2*l*c^2 + D*2*m = 0 // - l *(A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + (B * ab^2 + D * 2 * m) = 0 // l = (B * ab^2 + D * 2 * m) / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // l = B * ab^2 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + m * 2 * D / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // // For convenience: // // k = 1.0 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // // Then: // // l = B * ab^2 * k + m * 2 * D * k // l = k * (B*ab^2 + m*2*D) // // For further convenience: // // q = B*ab^2*k // r = 2*D*k // // l = (r*m + q) // l^2 = (r^2 * m^2 + 2*r*m*q + q^2) // // (b) Simplify the second equation before substitution // // ((-l*A * ab^2 ) / (2 * m))^2/ab^2 + (((1 - l*B) * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0 // (-l*A * ab^2 )^2/ab^2 + ((1 - l*B) * ab^2)^2/ab^2 + (-l*C * c^2)^2/c^2 = 4 * m^2 // (-l*A)^2 * ab^2 + (1 - l*B)^2 * ab^2 + (-l*C)^2 * c^2 = 4 * m^2 // l^2*A^2 * ab^2 + (1 - 2*l*B + l^2*B^2) * ab^2 + l^2*C^2 * c^2 = 4 * m^2 // A^2*ab^2*l^2 + ab^2 - 2*B*ab^2*l + B^2*ab^2*l^2 + C^2*c^2*l^2 - 4*m^2 = 0 // // (c) Substitute for l, l^2 // // A^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + ab^2 - 2*B*ab^2*(r*m + q) + B^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + C^2*c^2*(r^2 * m^2 + 2*r*m*q + q^2) - 4*m^2 = 0 // A^2*ab^2*r^2*m^2 + 2*A^2*ab^2*r*q*m + A^2*ab^2*q^2 + ab^2 - 2*B*ab^2*r*m - 2*B*ab^2*q + B^2*ab^2*r^2*m^2 + // 2*B^2*ab^2*r*q*m + B^2*ab^2*q^2 + C^2*c^2*r^2*m^2 + 2*C^2*c^2*r*q*m + C^2*c^2*q^2 - 4*m^2 = 0 // // (d) Group // // m^2 * [A^2*ab^2*r^2 + B^2*ab^2*r^2 + C^2*c^2*r^2 - 4] + // m * [2*A^2*ab^2*r*q - 2*B*ab^2*r + 2*B^2*ab^2*r*q + 2*C^2*c^2*r*q] + // [A^2*ab^2*q^2 + ab^2 - 2*B*ab^2*q + B^2*ab^2*q^2 + C^2*c^2*q^2] = 0 //System.err.println(" computing Y bound"); // Useful subexpressions for this bound final double q = B*abSquared*k; final double qSquared = q * q; // Quadratic equation final double a = ASquared*abSquared*rSquared + BSquared*abSquared*rSquared + CSquared*cSquared*rSquared - 4.0; final double b = 2.0*ASquared*abSquared*r*q - 2.0*B*abSquared*r + 2.0*BSquared*abSquared*r*q + 2.0*CSquared*cSquared*r*q; final double c = ASquared*abSquared*qSquared + abSquared - 2.0*B*abSquared*q + BSquared*abSquared*qSquared + CSquared*cSquared*qSquared; if (Math.abs(a) >= MINIMUM_RESOLUTION_SQUARED) { final double sqrtTerm = b*b - 4.0*a*c; if (Math.abs(sqrtTerm) < MINIMUM_RESOLUTION_SQUARED) { // One solution final double m = -b / (2.0 * a); // Valid? if (Math.abs(m) >= MINIMUM_RESOLUTION) { final double l = r * m + q; // x = (-l*A * ab^2 ) / (2 * m) // y = ((1.0-l*B) * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom0 = 0.5 / m; final GeoPoint thePoint = new GeoPoint(-l*A * abSquared * denom0, (1.0-l*B) * abSquared * denom0, -l*C * cSquared * denom0); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint1.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint); addPoint(boundsInfo, bounds, thePoint); } else { // This is a plane of the form A=0 B=n C=0. We can set a bound only by noting the D value. boundsInfo.addYValue(-D/B); } } else if (sqrtTerm > 0.0) { // Two solutions final double sqrtResult = Math.sqrt(sqrtTerm); final double commonDenom = 0.5/a; final double m1 = (-b + sqrtResult) * commonDenom; assert Math.abs(a * m1 * m1 + b * m1 + c) < MINIMUM_RESOLUTION; final double m2 = (-b - sqrtResult) * commonDenom; assert Math.abs(a * m2 * m2 + b * m2 + c) < MINIMUM_RESOLUTION; if (Math.abs(m1) >= MINIMUM_RESOLUTION || Math.abs(m2) >= MINIMUM_RESOLUTION) { final double l1 = r * m1 + q; final double l2 = r * m2 + q; // x = (-l*A * ab^2 ) / (2 * m) // y = ((1.0-l*B) * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom1 = 0.5 / m1; final double denom2 = 0.5 / m2; final GeoPoint thePoint1 = new GeoPoint(-l1*A * abSquared * denom1, (1.0-l1*B) * abSquared * denom1, -l1*C * cSquared * denom1); final GeoPoint thePoint2 = new GeoPoint(-l2*A * abSquared * denom2, (1.0-l2*B) * abSquared * denom2, -l2*C * cSquared * denom2); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint1): "Point1: "+thePoint1+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint1.x*thePoint1.x*planetModel.inverseAb*planetModel.inverseAb + thePoint1.y*thePoint1.y*planetModel.inverseAb*planetModel.inverseAb + thePoint1.z*thePoint1.z*planetModel.inverseC*planetModel.inverseC); //assert planetModel.pointOnSurface(thePoint2): "Point2: "+thePoint2+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint2.x*thePoint2.x*planetModel.inverseAb*planetModel.inverseAb + thePoint2.y*thePoint2.y*planetModel.inverseAb*planetModel.inverseAb + thePoint2.z*thePoint2.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint1): "Evaluation of point1: "+evaluate(thePoint1); //assert evaluateIsZero(thePoint2): "Evaluation of point2: "+evaluate(thePoint2); addPoint(boundsInfo, bounds, thePoint1); addPoint(boundsInfo, bounds, thePoint2); } else { // This is a plane of the form A=0 B=n C=0. We can set a bound only by noting the D value. boundsInfo.addYValue(-D/B); } } else { // No solutions } } else if (Math.abs(b) > MINIMUM_RESOLUTION_SQUARED) { // a = 0, so m = - c / b final double m = -c / b; final double l = r * m + q; // x = ( -l*A * ab^2 ) / (2 * m) // y = ((1-l*B) * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom0 = 0.5 / m; final GeoPoint thePoint = new GeoPoint(-l*A * abSquared * denom0, (1.0-l*B) * abSquared * denom0, -l*C * cSquared * denom0); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint); addPoint(boundsInfo, bounds, thePoint); } else { // Something went very wrong; a = b = 0 } } }
Accumulate bounds information for this plane, intersected with another plane and the world. Updates both latitude and longitude information, using max/min points found within the specified bounds. Also takes into account the error envelope for all planes being intersected.
Params:
  • planetModel – is the planet model to use in determining bounds.
  • boundsInfo – is the lat/lon info to update with additional bounding information.
  • p – is the other plane.
  • bounds – are the surfaces delineating what's inside the shape.
/** * Accumulate bounds information for this plane, intersected with another plane * and the world. * Updates both latitude and longitude information, using max/min points found * within the specified bounds. Also takes into account the error envelope for all * planes being intersected. * * @param planetModel is the planet model to use in determining bounds. * @param boundsInfo is the lat/lon info to update with additional bounding information. * @param p is the other plane. * @param bounds are the surfaces delineating what's inside the shape. */
public void recordBounds(final PlanetModel planetModel, final LatLonBounds boundsInfo, final Plane p, final Membership... bounds) { findIntersectionBounds(planetModel, boundsInfo, p, bounds); }
Accumulate bounds information for this plane, intersected with the unit sphere. Updates both latitude and longitude information, using max/min points found within the specified bounds.
Params:
  • planetModel – is the planet model to use in determining bounds.
  • boundsInfo – is the lat/lon info to update with additional bounding information.
  • bounds – are the surfaces delineating what's inside the shape.
/** * Accumulate bounds information for this plane, intersected with the unit sphere. * Updates both latitude and longitude information, using max/min points found * within the specified bounds. * * @param planetModel is the planet model to use in determining bounds. * @param boundsInfo is the lat/lon info to update with additional bounding information. * @param bounds are the surfaces delineating what's inside the shape. */
public void recordBounds(final PlanetModel planetModel, final LatLonBounds boundsInfo, final Membership... bounds) { // For clarity, load local variables with good names final double A = this.x; final double B = this.y; final double C = this.z; // Now compute latitude min/max points if (!boundsInfo.checkNoTopLatitudeBound() || !boundsInfo.checkNoBottomLatitudeBound()) { //System.err.println("Looking at latitude for plane "+this); // With ellipsoids, we really have only one viable way to do this computation. // Specifically, we compute an appropriate vertical plane, based on the current plane's x-y orientation, and // then intersect it with this one and with the ellipsoid. This gives us zero, one, or two points to use // as bounds. // There is one special case: horizontal circles. These require TWO vertical planes: one for the x, and one for // the y, and we use all four resulting points in the bounds computation. if ((Math.abs(A) >= MINIMUM_RESOLUTION || Math.abs(B) >= MINIMUM_RESOLUTION)) { // NOT a horizontal circle! //System.err.println(" Not a horizontal circle"); final Plane verticalPlane = constructNormalizedZPlane(A,B); final GeoPoint[] points = findIntersections(planetModel, verticalPlane, bounds, NO_BOUNDS); for (final GeoPoint point : points) { addPoint(boundsInfo, bounds, point); } } else { // Horizontal circle. Since a==b, any vertical plane suffices. final GeoPoint[] points = findIntersections(planetModel, normalXPlane, NO_BOUNDS, NO_BOUNDS); boundsInfo.addZValue(points[0]); } //System.err.println("Done latitude bounds"); } // First, figure out our longitude bounds, unless we no longer need to consider that if (!boundsInfo.checkNoLongitudeBound()) { //System.err.println("Computing longitude bounds for "+this); //System.out.println("A = "+A+" B = "+B+" C = "+C+" D = "+D); // Compute longitude bounds double a; double b; double c; if (Math.abs(C) < MINIMUM_RESOLUTION) { // Degenerate; the equation describes a line //System.out.println("It's a zero-width ellipse"); // Ax + By + D = 0 if (Math.abs(D) >= MINIMUM_RESOLUTION) { if (Math.abs(A) > Math.abs(B)) { // Use equation suitable for A != 0 // We need to find the endpoints of the zero-width ellipse. // Geometrically, we have a line segment in x-y space. We need to locate the endpoints // of that line. But luckily, we know some things: specifically, since it is a // degenerate situation in projection, the C value had to have been 0. That // means that our line's endpoints will coincide with the projected ellipse. All we // need to do then is to find the intersection of the projected ellipse and the line // equation: // // A x + B y + D = 0 // // Since A != 0: // x = (-By - D)/A // // The projected ellipse: // x^2/a^2 + y^2/b^2 - 1 = 0 // Substitute: // [(-By-D)/A]^2/a^2 + y^2/b^2 -1 = 0 // Multiply through by A^2: // [-By - D]^2/a^2 + A^2*y^2/b^2 - A^2 = 0 // Multiply out: // B^2*y^2/a^2 + 2BDy/a^2 + D^2/a^2 + A^2*y^2/b^2 - A^2 = 0 // Group: // y^2 * [B^2/a^2 + A^2/b^2] + y [2BD/a^2] + [D^2/a^2-A^2] = 0 a = B * B * planetModel.inverseAbSquared + A * A * planetModel.inverseAbSquared; b = 2.0 * B * D * planetModel.inverseAbSquared; c = D * D * planetModel.inverseAbSquared - A * A; double sqrtClause = b * b - 4.0 * a * c; if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_SQUARED) { double y0 = -b / (2.0 * a); double x0 = (-D - B * y0) / A; double z0 = 0.0; addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0)); } else if (sqrtClause > 0.0) { double sqrtResult = Math.sqrt(sqrtClause); double denom = 1.0 / (2.0 * a); double Hdenom = 1.0 / A; double y0a = (-b + sqrtResult) * denom; double y0b = (-b - sqrtResult) * denom; double x0a = (-D - B * y0a) * Hdenom; double x0b = (-D - B * y0b) * Hdenom; double z0a = 0.0; double z0b = 0.0; addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a)); addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b)); } } else { // Use equation suitable for B != 0 // Since I != 0, we rewrite: // y = (-Ax - D)/B a = B * B * planetModel.inverseAbSquared + A * A * planetModel.inverseAbSquared; b = 2.0 * A * D * planetModel.inverseAbSquared; c = D * D * planetModel.inverseAbSquared - B * B; double sqrtClause = b * b - 4.0 * a * c; if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_SQUARED) { double x0 = -b / (2.0 * a); double y0 = (-D - A * x0) / B; double z0 = 0.0; addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0)); } else if (sqrtClause > 0.0) { double sqrtResult = Math.sqrt(sqrtClause); double denom = 1.0 / (2.0 * a); double Idenom = 1.0 / B; double x0a = (-b + sqrtResult) * denom; double x0b = (-b - sqrtResult) * denom; double y0a = (-D - A * x0a) * Idenom; double y0b = (-D - A * x0b) * Idenom; double z0a = 0.0; double z0b = 0.0; addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a)); addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b)); } } } } else { //System.err.println("General longitude bounds..."); // NOTE WELL: The x,y,z values generated here are NOT on the unit sphere. // They are for lat/lon calculation purposes only. x-y is meant to be used for longitude determination, // and z for latitude, and that's all the values are good for. // (1) Intersect the plane and the ellipsoid, and project the results into the x-y plane: // From plane: // z = (-Ax - By - D) / C // From ellipsoid: // x^2/a^2 + y^2/b^2 + [(-Ax - By - D) / C]^2/c^2 = 1 // Simplify/expand: // C^2*x^2/a^2 + C^2*y^2/b^2 + (-Ax - By - D)^2/c^2 = C^2 // // x^2 * C^2/a^2 + y^2 * C^2/b^2 + x^2 * A^2/c^2 + ABxy/c^2 + ADx/c^2 + ABxy/c^2 + y^2 * B^2/c^2 + BDy/c^2 + ADx/c^2 + BDy/c^2 + D^2/c^2 = C^2 // Group: // [A^2/c^2 + C^2/a^2] x^2 + [B^2/c^2 + C^2/b^2] y^2 + [2AB/c^2]xy + [2AD/c^2]x + [2BD/c^2]y + [D^2/c^2-C^2] = 0 // For convenience, introduce post-projection coefficient variables to make life easier. // E x^2 + F y^2 + G xy + H x + I y + J = 0 double E = A * A * planetModel.inverseCSquared + C * C * planetModel.inverseAbSquared; double F = B * B * planetModel.inverseCSquared + C * C * planetModel.inverseAbSquared; double G = 2.0 * A * B * planetModel.inverseCSquared; double H = 2.0 * A * D * planetModel.inverseCSquared; double I = 2.0 * B * D * planetModel.inverseCSquared; double J = D * D * planetModel.inverseCSquared - C * C; //System.err.println("E = " + E + " F = " + F + " G = " + G + " H = "+ H + " I = " + I + " J = " + J); // Check if the origin is within, by substituting x = 0, y = 0 and seeing if less than zero if (Math.abs(J) >= MINIMUM_RESOLUTION && J > 0.0) { // The derivative of the curve above is: // 2Exdx + 2Fydy + G(xdy+ydx) + Hdx + Idy = 0 // (2Ex + Gy + H)dx + (2Fy + Gx + I)dy = 0 // dy/dx = - (2Ex + Gy + H) / (2Fy + Gx + I) // // The equation of a line going through the origin with the slope dy/dx is: // y = dy/dx x // y = - (2Ex + Gy + H) / (2Fy + Gx + I) x // Rearrange: // (2Fy + Gx + I) y + (2Ex + Gy + H) x = 0 // 2Fy^2 + Gxy + Iy + 2Ex^2 + Gxy + Hx = 0 // 2Ex^2 + 2Fy^2 + 2Gxy + Hx + Iy = 0 // // Multiply the original equation by 2: // 2E x^2 + 2F y^2 + 2G xy + 2H x + 2I y + 2J = 0 // Subtract one from the other, to remove the high-order terms: // Hx + Iy + 2J = 0 // Now, we can substitute either x = or y = into the derivative equation, or into the original equation. // But we will need to base this on which coefficient is non-zero if (Math.abs(H) > Math.abs(I)) { //System.err.println(" Using the y quadratic"); // x = (-2J - Iy)/H // Plug into the original equation: // E [(-2J - Iy)/H]^2 + F y^2 + G [(-2J - Iy)/H]y + H [(-2J - Iy)/H] + I y + J = 0 // E [(-2J - Iy)/H]^2 + F y^2 + G [(-2J - Iy)/H]y - J = 0 // Same equation as derivative equation, except for a factor of 2! So it doesn't matter which we pick. // Plug into derivative equation: // 2E[(-2J - Iy)/H]^2 + 2Fy^2 + 2G[(-2J - Iy)/H]y + H[(-2J - Iy)/H] + Iy = 0 // 2E[(-2J - Iy)/H]^2 + 2Fy^2 + 2G[(-2J - Iy)/H]y - 2J = 0 // E[(-2J - Iy)/H]^2 + Fy^2 + G[(-2J - Iy)/H]y - J = 0 // Multiply by H^2 to make manipulation easier // E[(-2J - Iy)]^2 + F*H^2*y^2 + GH[(-2J - Iy)]y - J*H^2 = 0 // Do the square // E[4J^2 + 4IJy + I^2*y^2] + F*H^2*y^2 + GH(-2Jy - I*y^2) - J*H^2 = 0 // Multiply it out // 4E*J^2 + 4EIJy + E*I^2*y^2 + H^2*Fy^2 - 2GHJy - GH*I*y^2 - J*H^2 = 0 // Group: // y^2 [E*I^2 - GH*I + F*H^2] + y [4EIJ - 2GHJ] + [4E*J^2 - J*H^2] = 0 a = E * I * I - G * H * I + F * H * H; b = 4.0 * E * I * J - 2.0 * G * H * J; c = 4.0 * E * J * J - J * H * H; //System.out.println("a="+a+" b="+b+" c="+c); double sqrtClause = b * b - 4.0 * a * c; //System.out.println("sqrtClause="+sqrtClause); if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_CUBED) { //System.err.println(" One solution"); double y0 = -b / (2.0 * a); double x0 = (-2.0 * J - I * y0) / H; double z0 = (-A * x0 - B * y0 - D) / C; addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0)); } else if (sqrtClause > 0.0) { //System.err.println(" Two solutions"); double sqrtResult = Math.sqrt(sqrtClause); double denom = 1.0 / (2.0 * a); double Hdenom = 1.0 / H; double Cdenom = 1.0 / C; double y0a = (-b + sqrtResult) * denom; double y0b = (-b - sqrtResult) * denom; double x0a = (-2.0 * J - I * y0a) * Hdenom; double x0b = (-2.0 * J - I * y0b) * Hdenom; double z0a = (-A * x0a - B * y0a - D) * Cdenom; double z0b = (-A * x0b - B * y0b - D) * Cdenom; addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a)); addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b)); } } else { //System.err.println(" Using the x quadratic"); // y = (-2J - Hx)/I // Plug into the original equation: // E x^2 + F [(-2J - Hx)/I]^2 + G x[(-2J - Hx)/I] - J = 0 // Multiply by I^2 to make manipulation easier // E * I^2 * x^2 + F [(-2J - Hx)]^2 + GIx[(-2J - Hx)] - J * I^2 = 0 // Do the square // E * I^2 * x^2 + F [ 4J^2 + 4JHx + H^2*x^2] + GI[(-2Jx - H*x^2)] - J * I^2 = 0 // Multiply it out // E * I^2 * x^2 + 4FJ^2 + 4FJHx + F*H^2*x^2 - 2GIJx - HGI*x^2 - J * I^2 = 0 // Group: // x^2 [E*I^2 - GHI + F*H^2] + x [4FJH - 2GIJ] + [4FJ^2 - J*I^2] = 0 // E x^2 + F y^2 + G xy + H x + I y + J = 0 a = E * I * I - G * H * I + F * H * H; b = 4.0 * F * H * J - 2.0 * G * I * J; c = 4.0 * F * J * J - J * I * I; //System.out.println("a="+a+" b="+b+" c="+c); double sqrtClause = b * b - 4.0 * a * c; //System.out.println("sqrtClause="+sqrtClause); if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_CUBED) { //System.err.println(" One solution; sqrt clause was "+sqrtClause); double x0 = -b / (2.0 * a); double y0 = (-2.0 * J - H * x0) / I; double z0 = (-A * x0 - B * y0 - D) / C; // Verify that x&y fulfill the equation // 2Ex^2 + 2Fy^2 + 2Gxy + Hx + Iy = 0 addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0)); } else if (sqrtClause > 0.0) { //System.err.println(" Two solutions"); double sqrtResult = Math.sqrt(sqrtClause); double denom = 1.0 / (2.0 * a); double Idenom = 1.0 / I; double Cdenom = 1.0 / C; double x0a = (-b + sqrtResult) * denom; double x0b = (-b - sqrtResult) * denom; double y0a = (-2.0 * J - H * x0a) * Idenom; double y0b = (-2.0 * J - H * x0b) * Idenom; double z0a = (-A * x0a - B * y0a - D) * Cdenom; double z0b = (-A * x0b - B * y0b - D) * Cdenom; addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a)); addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b)); } } } } } }
Add a point to boundsInfo if within a specifically bounded area.
Params:
  • boundsInfo – is the object to be modified.
  • bounds – is the area that the point must be within.
  • point – is the point.
/** Add a point to boundsInfo if within a specifically bounded area. * @param boundsInfo is the object to be modified. * @param bounds is the area that the point must be within. * @param point is the point. */
private static void addPoint(final Bounds boundsInfo, final Membership[] bounds, final GeoPoint point) { // Make sure the discovered point is within the bounds for (Membership bound : bounds) { if (!bound.isWithin(point)) return; } // Add the point boundsInfo.addPoint(point); }
Determine whether the plane intersects another plane within the bounds provided.
Params:
  • planetModel – is the planet model to use in determining intersection.
  • q – is the other plane.
  • notablePoints – are points to look at to disambiguate cases when the two planes are identical.
  • moreNotablePoints – are additional points to look at to disambiguate cases when the two planes are identical.
  • bounds – is one part of the bounds.
  • moreBounds – are more bounds.
Returns:true if there's an intersection.
/** * Determine whether the plane intersects another plane within the * bounds provided. * * @param planetModel is the planet model to use in determining intersection. * @param q is the other plane. * @param notablePoints are points to look at to disambiguate cases when the two planes are identical. * @param moreNotablePoints are additional points to look at to disambiguate cases when the two planes are identical. * @param bounds is one part of the bounds. * @param moreBounds are more bounds. * @return true if there's an intersection. */
public boolean intersects(final PlanetModel planetModel, final Plane q, final GeoPoint[] notablePoints, final GeoPoint[] moreNotablePoints, final Membership[] bounds, final Membership... moreBounds) { //System.err.println("Does plane "+this+" intersect with plane "+q); // If the two planes are identical, then the math will find no points of intersection. // So a special case of this is to check for plane equality. But that is not enough, because // what we really need at that point is to determine whether overlap occurs between the two parts of the intersection // of plane and circle. That is, are there *any* points on the plane that are within the bounds described? if (isNumericallyIdentical(q)) { //System.err.println(" Identical plane"); // The only way to efficiently figure this out will be to have a list of trial points available to evaluate. // We look for any point that fulfills all the bounds. for (GeoPoint p : notablePoints) { if (meetsAllBounds(p, bounds, moreBounds)) { //System.err.println(" found a notable point in bounds, so intersects"); return true; } } for (GeoPoint p : moreNotablePoints) { if (meetsAllBounds(p, bounds, moreBounds)) { //System.err.println(" found a notable point in bounds, so intersects"); return true; } } //System.err.println(" no notable points inside found; no intersection"); return false; } // Save on allocations; do inline instead of calling findIntersections //System.err.println("Looking for intersection between plane "+this+" and plane "+q+" within bounds"); // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes //System.err.println(" planes are parallel - no intersection"); return false; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) double x0; double y0; double z0; // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomYZ; x0 = 0.0; y0 = (-this.D * q.z - this.z * -q.D) * denom; z0 = (this.y * -q.D + this.D * q.y) * denom; } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomXZ; x0 = (-this.D * q.z - this.z * -q.D) * denom; y0 = 0.0; z0 = (this.x * -q.D + this.D * q.x) * denom; } else { // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomXY; x0 = (-this.D * q.y - this.y * -q.D) * denom; y0 = (this.x * -q.D + this.D * q.x) * denom; z0 = 0.0; } // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" One point of intersection"); final double inverse2A = 1.0 / (2.0 * A); // One solution only final double t = -B * inverse2A; // Maybe we can save ourselves the cost of construction of a point? final double pointX = lineVectorX * t + x0; final double pointY = lineVectorY * t + y0; final double pointZ = lineVectorZ * t + z0; for (final Membership bound : bounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return false; } } for (final Membership bound : moreBounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return false; } } return true; } else if (BsquaredMinus > 0.0) { //System.err.println(" Two points of intersection"); final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; boolean point1Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } if (point1Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } } if (point1Valid) { return true; } final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { return false; } } for (final Membership bound : moreBounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { return false; } } return true; } else { //System.err.println(" no solutions - no intersection"); return false; } }
Determine whether the plane crosses another plane within the bounds provided. Crossing is defined as intersecting with the geo surface at two points.
Params:
  • planetModel – is the planet model to use in determining intersection.
  • q – is the other plane.
  • notablePoints – are points to look at to disambiguate cases when the two planes are identical.
  • moreNotablePoints – are additional points to look at to disambiguate cases when the two planes are identical.
  • bounds – is one part of the bounds.
  • moreBounds – are more bounds.
Returns:true if there's a crossing.
/** * Determine whether the plane crosses another plane within the * bounds provided. Crossing is defined as intersecting with the geo surface at two points. * * @param planetModel is the planet model to use in determining intersection. * @param q is the other plane. * @param notablePoints are points to look at to disambiguate cases when the two planes are identical. * @param moreNotablePoints are additional points to look at to disambiguate cases when the two planes are identical. * @param bounds is one part of the bounds. * @param moreBounds are more bounds. * @return true if there's a crossing. */
public boolean crosses(final PlanetModel planetModel, final Plane q, final GeoPoint[] notablePoints, final GeoPoint[] moreNotablePoints, final Membership[] bounds, final Membership... moreBounds) { //System.err.println("Does plane "+this+" cross plane "+q); // If the two planes are identical, then the math will find no points of intersection. // So a special case of this is to check for plane equality. But that is not enough, because // what we really need at that point is to determine whether overlap occurs between the two parts of the intersection // of plane and circle. That is, are there *any* points on the plane that are within the bounds described? if (isNumericallyIdentical(q)) { //System.err.println(" Identical plane"); // The only way to efficiently figure this out will be to have a list of trial points available to evaluate. // We look for any point that fulfills all the bounds. for (GeoPoint p : notablePoints) { if (meetsAllBounds(p, bounds, moreBounds)) { //System.err.println(" found a notable point in bounds, so intersects"); return true; } } for (GeoPoint p : moreNotablePoints) { if (meetsAllBounds(p, bounds, moreBounds)) { //System.err.println(" found a notable point in bounds, so intersects"); return true; } } //System.err.println(" no notable points inside found; no intersection"); return false; } // Save on allocations; do inline instead of calling findIntersections //System.err.println("Looking for intersection between plane "+this+" and plane "+q+" within bounds"); // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes //System.err.println(" planes are parallel - no intersection"); return false; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) double x0; double y0; double z0; // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomYZ; x0 = 0.0; y0 = (-this.D * q.z - this.z * -q.D) * denom; z0 = (this.y * -q.D + this.D * q.y) * denom; } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomXZ; x0 = (-this.D * q.z - this.z * -q.D) * denom; y0 = 0.0; z0 = (this.x * -q.D + this.D * q.x) * denom; } else { // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomXY; x0 = (-this.D * q.y - this.y * -q.D) * denom; y0 = (this.x * -q.D + this.D * q.x) * denom; z0 = 0.0; } // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" One point of intersection"); // We're not interested in situations where there is only one solution; these are intersections but not crossings return false; } else if (BsquaredMinus > 0.0) { //System.err.println(" Two points of intersection"); final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; boolean point1Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } if (point1Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } } if (point1Valid) { return true; } final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { return false; } } for (final Membership bound : moreBounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { return false; } } return true; } else { //System.err.println(" no solutions - no intersection"); return false; } }
Returns true if this plane and the other plane are functionally identical within the margin of error. Functionally identical means that the planes are so close to parallel that many aspects of planar math, like intersections, no longer have answers to within the required precision.
Params:
  • p – is the plane to compare against.
Returns:true if the planes are functionally identical.
/** * Returns true if this plane and the other plane are functionally identical within the margin of error. * Functionally identical means that the planes are so close to parallel that many aspects of planar math, * like intersections, no longer have answers to within the required precision. * @param p is the plane to compare against. * @return true if the planes are functionally identical. */
public boolean isFunctionallyIdentical(final Plane p) { // We can get the correlation by just doing a parallel plane check. That's basically finding // out if the magnitude of the cross-product is "zero". final double cross1 = this.y * p.z - this.z * p.y; final double cross2 = this.z * p.x - this.x * p.z; final double cross3 = this.x * p.y - this.y * p.x; //System.out.println("cross product magnitude = "+(cross1 * cross1 + cross2 * cross2 + cross3 * cross3)); // Should be MINIMUM_RESOLUTION_SQUARED, but that gives us planes that are *almost* parallel, and those are problematic too, // so we have a tighter constraint on parallelism in this method. if (cross1 * cross1 + cross2 * cross2 + cross3 * cross3 >= 5 * MINIMUM_RESOLUTION) { return false; } // Now, see whether the parallel planes are in fact on top of one another. // The math: // We need a single point that fulfills: // Ax + By + Cz + D = 0 // Pick: // x0 = -(A * D) / (A^2 + B^2 + C^2) // y0 = -(B * D) / (A^2 + B^2 + C^2) // z0 = -(C * D) / (A^2 + B^2 + C^2) // Check: // A (x0) + B (y0) + C (z0) + D =? 0 // A (-(A * D) / (A^2 + B^2 + C^2)) + B (-(B * D) / (A^2 + B^2 + C^2)) + C (-(C * D) / (A^2 + B^2 + C^2)) + D ?= 0 // -D [ A^2 / (A^2 + B^2 + C^2) + B^2 / (A^2 + B^2 + C^2) + C^2 / (A^2 + B^2 + C^2)] + D ?= 0 // Yes. final double denom = 1.0 / (p.x * p.x + p.y * p.y + p.z * p.z); return evaluateIsZero(-p.x * p.D * denom, -p.y * p.D * denom, -p.z * p.D * denom); }
Returns true if this plane and the other plane are identical within the margin of error.
Params:
  • p – is the plane to compare against.
Returns:true if the planes are numerically identical.
/** * Returns true if this plane and the other plane are identical within the margin of error. * @param p is the plane to compare against. * @return true if the planes are numerically identical. */
public boolean isNumericallyIdentical(final Plane p) { // We can get the correlation by just doing a parallel plane check. That's basically finding // out if the magnitude of the cross-product is "zero". final double cross1 = this.y * p.z - this.z * p.y; final double cross2 = this.z * p.x - this.x * p.z; final double cross3 = this.x * p.y - this.y * p.x; //System.out.println("cross product magnitude = "+(cross1 * cross1 + cross2 * cross2 + cross3 * cross3)); if (cross1 * cross1 + cross2 * cross2 + cross3 * cross3 >= MINIMUM_RESOLUTION_SQUARED) { return false; } /* Old method if (Math.abs(this.y * p.z - this.z * p.y) >= MINIMUM_RESOLUTION) return false; if (Math.abs(this.z * p.x - this.x * p.z) >= MINIMUM_RESOLUTION) return false; if (Math.abs(this.x * p.y - this.y * p.x) >= MINIMUM_RESOLUTION) return false; */ // Now, see whether the parallel planes are in fact on top of one another. // The math: // We need a single point that fulfills: // Ax + By + Cz + D = 0 // Pick: // x0 = -(A * D) / (A^2 + B^2 + C^2) // y0 = -(B * D) / (A^2 + B^2 + C^2) // z0 = -(C * D) / (A^2 + B^2 + C^2) // Check: // A (x0) + B (y0) + C (z0) + D =? 0 // A (-(A * D) / (A^2 + B^2 + C^2)) + B (-(B * D) / (A^2 + B^2 + C^2)) + C (-(C * D) / (A^2 + B^2 + C^2)) + D ?= 0 // -D [ A^2 / (A^2 + B^2 + C^2) + B^2 / (A^2 + B^2 + C^2) + C^2 / (A^2 + B^2 + C^2)] + D ?= 0 // Yes. final double denom = 1.0 / (p.x * p.x + p.y * p.y + p.z * p.z); return evaluateIsZero(-p.x * p.D * denom, -p.y * p.D * denom, -p.z * p.D * denom); }
Locate a point that is within the specified bounds and on the specified plane, that has an arcDistance as specified from the startPoint.
Params:
  • planetModel – is the planet model.
  • arcDistanceValue – is the arc distance.
  • startPoint – is the starting point.
  • bounds – are the bounds.
Returns:zero, one, or two points.
/** * Locate a point that is within the specified bounds and on the specified plane, that has an arcDistance as * specified from the startPoint. * @param planetModel is the planet model. * @param arcDistanceValue is the arc distance. * @param startPoint is the starting point. * @param bounds are the bounds. * @return zero, one, or two points. */
public GeoPoint[] findArcDistancePoints(final PlanetModel planetModel, final double arcDistanceValue, final GeoPoint startPoint, final Membership... bounds) { if (Math.abs(D) >= MINIMUM_RESOLUTION) { throw new IllegalStateException("Can't find arc distance using plane that doesn't go through origin"); } if (!evaluateIsZero(startPoint)) { throw new IllegalArgumentException("Start point is not on plane"); } // The following assertion fails at times even for planes that were *explicitly* normalized, so I've disabled the check. //assert Math.abs(x*x + y*y + z*z - 1.0) < MINIMUM_RESOLUTION_SQUARED : "Plane needs to be normalized"; // The first step is to rotate coordinates for the point so that the plane lies on the x-y plane. // To acheive this, there will need to be three rotations: // (1) rotate the plane in x-y so that the y axis lies in it. // (2) rotate the plane in x-z so that the plane lies on the x-y plane. // (3) rotate in x-y so that the starting vector points to (1,0,0). // This presumes a normalized plane!! final double azimuthMagnitude = Math.sqrt(this.x * this.x + this.y * this.y); final double cosPlaneAltitude = this.z; final double sinPlaneAltitude = azimuthMagnitude; final double cosPlaneAzimuth = this.x / azimuthMagnitude; final double sinPlaneAzimuth = this.y / azimuthMagnitude; assert Math.abs(sinPlaneAltitude * sinPlaneAltitude + cosPlaneAltitude * cosPlaneAltitude - 1.0) < MINIMUM_RESOLUTION : "Improper sin/cos of altitude: "+(sinPlaneAltitude * sinPlaneAltitude + cosPlaneAltitude * cosPlaneAltitude); assert Math.abs(sinPlaneAzimuth * sinPlaneAzimuth + cosPlaneAzimuth * cosPlaneAzimuth - 1.0) < MINIMUM_RESOLUTION : "Improper sin/cos of azimuth: "+(sinPlaneAzimuth * sinPlaneAzimuth + cosPlaneAzimuth * cosPlaneAzimuth); // Coordinate rotation formula: // xT = xS cos T - yS sin T // yT = xS sin T + yS cos T // But we're rotating backwards, so use: // sin (-T) = -sin (T) // cos (-T) = cos (T) // Now, rotate startpoint in x-y final double x0 = startPoint.x; final double y0 = startPoint.y; final double z0 = startPoint.z; final double x1 = x0 * cosPlaneAzimuth + y0 * sinPlaneAzimuth; final double y1 = -x0 * sinPlaneAzimuth + y0 * cosPlaneAzimuth; final double z1 = z0; // Rotate now in x-z final double x2 = x1 * cosPlaneAltitude - z1 * sinPlaneAltitude; final double y2 = y1; final double z2 = +x1 * sinPlaneAltitude + z1 * cosPlaneAltitude; assert Math.abs(z2) < MINIMUM_RESOLUTION : "Rotation should have put startpoint on x-y plane, instead has value "+z2; // Ok, we have the start point on the x-y plane. To apply the arc distance, we // next need to convert to an angle (in radians). final double startAngle = Math.atan2(y2, x2); // To apply the arc distance, just add to startAngle. final double point1Angle = startAngle + arcDistanceValue; final double point2Angle = startAngle - arcDistanceValue; // Convert each point to x-y final double point1x2 = Math.cos(point1Angle); final double point1y2 = Math.sin(point1Angle); final double point1z2 = 0.0; final double point2x2 = Math.cos(point2Angle); final double point2y2 = Math.sin(point2Angle); final double point2z2 = 0.0; // Now, do the reverse rotations for both points // Altitude... final double point1x1 = point1x2 * cosPlaneAltitude + point1z2 * sinPlaneAltitude; final double point1y1 = point1y2; final double point1z1 = -point1x2 * sinPlaneAltitude + point1z2 * cosPlaneAltitude; final double point2x1 = point2x2 * cosPlaneAltitude + point2z2 * sinPlaneAltitude; final double point2y1 = point2y2; final double point2z1 = -point2x2 * sinPlaneAltitude + point2z2 * cosPlaneAltitude; // Azimuth... final double point1x0 = point1x1 * cosPlaneAzimuth - point1y1 * sinPlaneAzimuth; final double point1y0 = point1x1 * sinPlaneAzimuth + point1y1 * cosPlaneAzimuth; final double point1z0 = point1z1; final double point2x0 = point2x1 * cosPlaneAzimuth - point2y1 * sinPlaneAzimuth; final double point2y0 = point2x1 * sinPlaneAzimuth + point2y1 * cosPlaneAzimuth; final double point2z0 = point2z1; final GeoPoint point1 = planetModel.createSurfacePoint(point1x0, point1y0, point1z0); final GeoPoint point2 = planetModel.createSurfacePoint(point2x0, point2y0, point2z0); // Figure out what to return boolean isPoint1Inside = meetsAllBounds(point1, bounds); boolean isPoint2Inside = meetsAllBounds(point2, bounds); if (isPoint1Inside) { if (isPoint2Inside) { return new GeoPoint[]{point1, point2}; } else { return new GeoPoint[]{point1}; } } else { if (isPoint2Inside) { return new GeoPoint[]{point2}; } else { return new GeoPoint[0]; } } }
Check if a vector meets the provided bounds.
Params:
  • p – is the vector.
  • bounds – are the bounds.
Returns:true if the vector describes a point within the bounds.
/** * Check if a vector meets the provided bounds. * @param p is the vector. * @param bounds are the bounds. * @return true if the vector describes a point within the bounds. */
private static boolean meetsAllBounds(final Vector p, final Membership[] bounds) { return meetsAllBounds(p.x, p.y, p.z, bounds); }
Check if a vector meets the provided bounds.
Params:
  • x – is the x value.
  • y – is the y value.
  • z – is the z value.
  • bounds – are the bounds.
Returns:true if the vector describes a point within the bounds.
/** * Check if a vector meets the provided bounds. * @param x is the x value. * @param y is the y value. * @param z is the z value. * @param bounds are the bounds. * @return true if the vector describes a point within the bounds. */
private static boolean meetsAllBounds(final double x, final double y, final double z, final Membership[] bounds) { for (final Membership bound : bounds) { if (!bound.isWithin(x,y,z)) return false; } return true; }
Check if a vector meets the provided bounds.
Params:
  • p – is the vector.
  • bounds – are the bounds.
  • moreBounds – are an additional set of bounds.
Returns:true if the vector describes a point within the bounds.
/** * Check if a vector meets the provided bounds. * @param p is the vector. * @param bounds are the bounds. * @param moreBounds are an additional set of bounds. * @return true if the vector describes a point within the bounds. */
private static boolean meetsAllBounds(final Vector p, final Membership[] bounds, final Membership[] moreBounds) { return meetsAllBounds(p.x, p.y, p.z, bounds, moreBounds); }
Check if a vector meets the provided bounds.
Params:
  • x – is the x value.
  • y – is the y value.
  • z – is the z value.
  • bounds – are the bounds.
  • moreBounds – are an additional set of bounds.
Returns:true if the vector describes a point within the bounds.
/** * Check if a vector meets the provided bounds. * @param x is the x value. * @param y is the y value. * @param z is the z value. * @param bounds are the bounds. * @param moreBounds are an additional set of bounds. * @return true if the vector describes a point within the bounds. */
private static boolean meetsAllBounds(final double x, final double y, final double z, final Membership[] bounds, final Membership[] moreBounds) { return meetsAllBounds(x,y,z, bounds) && meetsAllBounds(x,y,z, moreBounds); }
Find a sample point on the intersection between two planes and the world.
Params:
  • planetModel – is the planet model.
  • q – is the second plane to consider.
Returns:a sample point that is on the intersection between the two planes and the world.
/** * Find a sample point on the intersection between two planes and the world. * @param planetModel is the planet model. * @param q is the second plane to consider. * @return a sample point that is on the intersection between the two planes and the world. */
public GeoPoint getSampleIntersectionPoint(final PlanetModel planetModel, final Plane q) { final GeoPoint[] intersections = findIntersections(planetModel, q, NO_BOUNDS, NO_BOUNDS); if (intersections.length == 0) return null; return intersections[0]; } @Override public String toString() { return "[A=" + x + ", B=" + y + "; C=" + z + "; D=" + D + "]"; } @Override public boolean equals(Object o) { if (!super.equals(o)) return false; if (!(o instanceof Plane)) return false; Plane other = (Plane) o; return other.D == D; } @Override public int hashCode() { int result = super.hashCode(); long temp; temp = Double.doubleToLongBits(D); result = 31 * result + (int) (temp ^ (temp >>> 32)); return result; } }