/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.SortedSet;
import java.util.TreeSet;

import org.apache.commons.math3.analysis.solvers.BracketingNthOrderBrentSolver;
import org.apache.commons.math3.analysis.solvers.UnivariateSolver;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.ode.events.EventHandler;
import org.apache.commons.math3.ode.events.EventState;
import org.apache.commons.math3.ode.sampling.AbstractStepInterpolator;
import org.apache.commons.math3.ode.sampling.StepHandler;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.IntegerSequence;
import org.apache.commons.math3.util.Precision;

Base class managing common boilerplate for all integrators.
Since:2.0
/** * Base class managing common boilerplate for all integrators. * @since 2.0 */
public abstract class AbstractIntegrator implements FirstOrderIntegrator {
Step handler.
/** Step handler. */
protected Collection<StepHandler> stepHandlers;
Current step start time.
/** Current step start time. */
protected double stepStart;
Current stepsize.
/** Current stepsize. */
protected double stepSize;
Indicator for last step.
/** Indicator for last step. */
protected boolean isLastStep;
Indicator that a state or derivative reset was triggered by some event.
/** Indicator that a state or derivative reset was triggered by some event. */
protected boolean resetOccurred;
Events states.
/** Events states. */
private Collection<EventState> eventsStates;
Initialization indicator of events states.
/** Initialization indicator of events states. */
private boolean statesInitialized;
Name of the method.
/** Name of the method. */
private final String name;
Counter for number of evaluations.
/** Counter for number of evaluations. */
private IntegerSequence.Incrementor evaluations;
Differential equations to integrate.
/** Differential equations to integrate. */
private transient ExpandableStatefulODE expandable;
Build an instance.
Params:
  • name – name of the method
/** Build an instance. * @param name name of the method */
public AbstractIntegrator(final String name) { this.name = name; stepHandlers = new ArrayList<StepHandler>(); stepStart = Double.NaN; stepSize = Double.NaN; eventsStates = new ArrayList<EventState>(); statesInitialized = false; evaluations = IntegerSequence.Incrementor.create().withMaximalCount(Integer.MAX_VALUE); }
Build an instance with a null name.
/** Build an instance with a null name. */
protected AbstractIntegrator() { this(null); }
{@inheritDoc}
/** {@inheritDoc} */
public String getName() { return name; }
{@inheritDoc}
/** {@inheritDoc} */
public void addStepHandler(final StepHandler handler) { stepHandlers.add(handler); }
{@inheritDoc}
/** {@inheritDoc} */
public Collection<StepHandler> getStepHandlers() { return Collections.unmodifiableCollection(stepHandlers); }
{@inheritDoc}
/** {@inheritDoc} */
public void clearStepHandlers() { stepHandlers.clear(); }
{@inheritDoc}
/** {@inheritDoc} */
public void addEventHandler(final EventHandler handler, final double maxCheckInterval, final double convergence, final int maxIterationCount) { addEventHandler(handler, maxCheckInterval, convergence, maxIterationCount, new BracketingNthOrderBrentSolver(convergence, 5)); }
{@inheritDoc}
/** {@inheritDoc} */
public void addEventHandler(final EventHandler handler, final double maxCheckInterval, final double convergence, final int maxIterationCount, final UnivariateSolver solver) { eventsStates.add(new EventState(handler, maxCheckInterval, convergence, maxIterationCount, solver)); }
{@inheritDoc}
/** {@inheritDoc} */
public Collection<EventHandler> getEventHandlers() { final List<EventHandler> list = new ArrayList<EventHandler>(eventsStates.size()); for (EventState state : eventsStates) { list.add(state.getEventHandler()); } return Collections.unmodifiableCollection(list); }
{@inheritDoc}
/** {@inheritDoc} */
public void clearEventHandlers() { eventsStates.clear(); }
{@inheritDoc}
/** {@inheritDoc} */
public double getCurrentStepStart() { return stepStart; }
{@inheritDoc}
/** {@inheritDoc} */
public double getCurrentSignedStepsize() { return stepSize; }
{@inheritDoc}
/** {@inheritDoc} */
public void setMaxEvaluations(int maxEvaluations) { evaluations = evaluations.withMaximalCount((maxEvaluations < 0) ? Integer.MAX_VALUE : maxEvaluations); }
{@inheritDoc}
/** {@inheritDoc} */
public int getMaxEvaluations() { return evaluations.getMaximalCount(); }
{@inheritDoc}
/** {@inheritDoc} */
public int getEvaluations() { return evaluations.getCount(); }
Prepare the start of an integration.
Params:
  • t0 – start value of the independent time variable
  • y0 – array containing the start value of the state vector
  • t – target time for the integration
/** Prepare the start of an integration. * @param t0 start value of the independent <i>time</i> variable * @param y0 array containing the start value of the state vector * @param t target time for the integration */
protected void initIntegration(final double t0, final double[] y0, final double t) { evaluations = evaluations.withStart(0); for (final EventState state : eventsStates) { state.setExpandable(expandable); state.getEventHandler().init(t0, y0, t); } for (StepHandler handler : stepHandlers) { handler.init(t0, y0, t); } setStateInitialized(false); }
Set the equations.
Params:
  • equations – equations to set
/** Set the equations. * @param equations equations to set */
protected void setEquations(final ExpandableStatefulODE equations) { this.expandable = equations; }
Get the differential equations to integrate.
Returns:differential equations to integrate
Since:3.2
/** Get the differential equations to integrate. * @return differential equations to integrate * @since 3.2 */
protected ExpandableStatefulODE getExpandable() { return expandable; }
Get the evaluations counter.
Returns:evaluations counter
Since:3.2
Deprecated:as of 3.6 replaced with getCounter()
/** Get the evaluations counter. * @return evaluations counter * @since 3.2 * @deprecated as of 3.6 replaced with {@link #getCounter()} */
@Deprecated protected org.apache.commons.math3.util.Incrementor getEvaluationsCounter() { return org.apache.commons.math3.util.Incrementor.wrap(evaluations); }
Get the evaluations counter.
Returns:evaluations counter
Since:3.6
/** Get the evaluations counter. * @return evaluations counter * @since 3.6 */
protected IntegerSequence.Incrementor getCounter() { return evaluations; }
{@inheritDoc}
/** {@inheritDoc} */
public double integrate(final FirstOrderDifferentialEquations equations, final double t0, final double[] y0, final double t, final double[] y) throws DimensionMismatchException, NumberIsTooSmallException, MaxCountExceededException, NoBracketingException { if (y0.length != equations.getDimension()) { throw new DimensionMismatchException(y0.length, equations.getDimension()); } if (y.length != equations.getDimension()) { throw new DimensionMismatchException(y.length, equations.getDimension()); } // prepare expandable stateful equations final ExpandableStatefulODE expandableODE = new ExpandableStatefulODE(equations); expandableODE.setTime(t0); expandableODE.setPrimaryState(y0); // perform integration integrate(expandableODE, t); // extract results back from the stateful equations System.arraycopy(expandableODE.getPrimaryState(), 0, y, 0, y.length); return expandableODE.getTime(); }
Integrate a set of differential equations up to the given time.

This method solves an Initial Value Problem (IVP).

The set of differential equations is composed of a main set, which can be extended by some sets of secondary equations. The set of equations must be already set up with initial time and partial states. At integration completion, the final time and partial states will be available in the same object.

Since this method stores some internal state variables made available in its public interface during integration (getCurrentSignedStepsize()), it is not thread-safe.

Params:
  • equations – complete set of differential equations to integrate
  • t – target time for the integration (can be set to a value smaller than t0 for backward integration)
Throws:
/** Integrate a set of differential equations up to the given time. * <p>This method solves an Initial Value Problem (IVP).</p> * <p>The set of differential equations is composed of a main set, which * can be extended by some sets of secondary equations. The set of * equations must be already set up with initial time and partial states. * At integration completion, the final time and partial states will be * available in the same object.</p> * <p>Since this method stores some internal state variables made * available in its public interface during integration ({@link * #getCurrentSignedStepsize()}), it is <em>not</em> thread-safe.</p> * @param equations complete set of differential equations to integrate * @param t target time for the integration * (can be set to a value smaller than <code>t0</code> for backward integration) * @exception NumberIsTooSmallException if integration step is too small * @throws DimensionMismatchException if the dimension of the complete state does not * match the complete equations sets dimension * @exception MaxCountExceededException if the number of functions evaluations is exceeded * @exception NoBracketingException if the location of an event cannot be bracketed */
public abstract void integrate(ExpandableStatefulODE equations, double t) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException;
Compute the derivatives and check the number of evaluations.
Params:
  • t – current value of the independent time variable
  • y – array containing the current value of the state vector
  • yDot – placeholder array where to put the time derivative of the state vector
Throws:
/** Compute the derivatives and check the number of evaluations. * @param t current value of the independent <I>time</I> variable * @param y array containing the current value of the state vector * @param yDot placeholder array where to put the time derivative of the state vector * @exception MaxCountExceededException if the number of functions evaluations is exceeded * @exception DimensionMismatchException if arrays dimensions do not match equations settings * @exception NullPointerException if the ODE equations have not been set (i.e. if this method * is called outside of a call to {@link #integrate(ExpandableStatefulODE, double)} or {@link * #integrate(FirstOrderDifferentialEquations, double, double[], double, double[])}) */
public void computeDerivatives(final double t, final double[] y, final double[] yDot) throws MaxCountExceededException, DimensionMismatchException, NullPointerException { evaluations.increment(); expandable.computeDerivatives(t, y, yDot); }
Set the stateInitialized flag.

This method must be called by integrators with the value false before they start integration, so a proper lazy initialization is done automatically on the first step.

Params:
  • stateInitialized – new value for the flag
Since:2.2
/** Set the stateInitialized flag. * <p>This method must be called by integrators with the value * {@code false} before they start integration, so a proper lazy * initialization is done automatically on the first step.</p> * @param stateInitialized new value for the flag * @since 2.2 */
protected void setStateInitialized(final boolean stateInitialized) { this.statesInitialized = stateInitialized; }
Accept a step, triggering events and step handlers.
Params:
  • interpolator – step interpolator
  • y – state vector at step end time, must be reset if an event asks for resetting or if an events stops integration during the step
  • yDot – placeholder array where to put the time derivative of the state vector
  • tEnd – final integration time
Throws:
Returns:time at end of step
Since:2.2
/** Accept a step, triggering events and step handlers. * @param interpolator step interpolator * @param y state vector at step end time, must be reset if an event * asks for resetting or if an events stops integration during the step * @param yDot placeholder array where to put the time derivative of the state vector * @param tEnd final integration time * @return time at end of step * @exception MaxCountExceededException if the interpolator throws one because * the number of functions evaluations is exceeded * @exception NoBracketingException if the location of an event cannot be bracketed * @exception DimensionMismatchException if arrays dimensions do not match equations settings * @since 2.2 */
protected double acceptStep(final AbstractStepInterpolator interpolator, final double[] y, final double[] yDot, final double tEnd) throws MaxCountExceededException, DimensionMismatchException, NoBracketingException { double previousT = interpolator.getGlobalPreviousTime(); final double currentT = interpolator.getGlobalCurrentTime(); // initialize the events states if needed if (! statesInitialized) { for (EventState state : eventsStates) { state.reinitializeBegin(interpolator); } statesInitialized = true; } // search for next events that may occur during the step final int orderingSign = interpolator.isForward() ? +1 : -1; SortedSet<EventState> occurringEvents = new TreeSet<EventState>(new Comparator<EventState>() {
{@inheritDoc}
/** {@inheritDoc} */
public int compare(EventState es0, EventState es1) { return orderingSign * Double.compare(es0.getEventTime(), es1.getEventTime()); } }); for (final EventState state : eventsStates) { if (state.evaluateStep(interpolator)) { // the event occurs during the current step occurringEvents.add(state); } } while (!occurringEvents.isEmpty()) { // handle the chronologically first event final Iterator<EventState> iterator = occurringEvents.iterator(); final EventState currentEvent = iterator.next(); iterator.remove(); // restrict the interpolator to the first part of the step, up to the event final double eventT = currentEvent.getEventTime(); interpolator.setSoftPreviousTime(previousT); interpolator.setSoftCurrentTime(eventT); // get state at event time interpolator.setInterpolatedTime(eventT); final double[] eventYComplete = new double[y.length]; expandable.getPrimaryMapper().insertEquationData(interpolator.getInterpolatedState(), eventYComplete); int index = 0; for (EquationsMapper secondary : expandable.getSecondaryMappers()) { secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index++), eventYComplete); } // advance all event states to current time for (final EventState state : eventsStates) { state.stepAccepted(eventT, eventYComplete); isLastStep = isLastStep || state.stop(); } // handle the first part of the step, up to the event for (final StepHandler handler : stepHandlers) { handler.handleStep(interpolator, isLastStep); } if (isLastStep) { // the event asked to stop integration System.arraycopy(eventYComplete, 0, y, 0, y.length); return eventT; } boolean needReset = false; resetOccurred = false; needReset = currentEvent.reset(eventT, eventYComplete); if (needReset) { // some event handler has triggered changes that // invalidate the derivatives, we need to recompute them interpolator.setInterpolatedTime(eventT); System.arraycopy(eventYComplete, 0, y, 0, y.length); computeDerivatives(eventT, y, yDot); resetOccurred = true; return eventT; } // prepare handling of the remaining part of the step previousT = eventT; interpolator.setSoftPreviousTime(eventT); interpolator.setSoftCurrentTime(currentT); // check if the same event occurs again in the remaining part of the step if (currentEvent.evaluateStep(interpolator)) { // the event occurs during the current step occurringEvents.add(currentEvent); } } // last part of the step, after the last event interpolator.setInterpolatedTime(currentT); final double[] currentY = new double[y.length]; expandable.getPrimaryMapper().insertEquationData(interpolator.getInterpolatedState(), currentY); int index = 0; for (EquationsMapper secondary : expandable.getSecondaryMappers()) { secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index++), currentY); } for (final EventState state : eventsStates) { state.stepAccepted(currentT, currentY); isLastStep = isLastStep || state.stop(); } isLastStep = isLastStep || Precision.equals(currentT, tEnd, 1); // handle the remaining part of the step, after all events if any for (StepHandler handler : stepHandlers) { handler.handleStep(interpolator, isLastStep); } return currentT; }
Check the integration span.
Params:
  • equations – set of differential equations
  • t – target time for the integration
Throws:
/** Check the integration span. * @param equations set of differential equations * @param t target time for the integration * @exception NumberIsTooSmallException if integration span is too small * @exception DimensionMismatchException if adaptive step size integrators * tolerance arrays dimensions are not compatible with equations settings */
protected void sanityChecks(final ExpandableStatefulODE equations, final double t) throws NumberIsTooSmallException, DimensionMismatchException { final double threshold = 1000 * FastMath.ulp(FastMath.max(FastMath.abs(equations.getTime()), FastMath.abs(t))); final double dt = FastMath.abs(equations.getTime() - t); if (dt <= threshold) { throw new NumberIsTooSmallException(LocalizedFormats.TOO_SMALL_INTEGRATION_INTERVAL, dt, threshold, false); } } }