/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.linear;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.Arrays;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.FieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.fraction.BigFraction;
import org.apache.commons.math3.fraction.Fraction;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;

A collection of static methods that operate on or return matrices.
/** * A collection of static methods that operate on or return matrices. * */
public class MatrixUtils {
The default format for RealMatrix objects.
Since:3.1
/** * The default format for {@link RealMatrix} objects. * @since 3.1 */
public static final RealMatrixFormat DEFAULT_FORMAT = RealMatrixFormat.getInstance();
A format for RealMatrix objects compatible with octave.
Since:3.1
/** * A format for {@link RealMatrix} objects compatible with octave. * @since 3.1 */
public static final RealMatrixFormat OCTAVE_FORMAT = new RealMatrixFormat("[", "]", "", "", "; ", ", ");
Private constructor.
/** * Private constructor. */
private MatrixUtils() { super(); }
Returns a RealMatrix with specified dimensions.

The type of matrix returned depends on the dimension. Below 212 elements (i.e. 4096 elements or 64×64 for a square matrix) which can be stored in a 32kB array, a Array2DRowRealMatrix instance is built. Above this threshold a BlockRealMatrix instance is built.

The matrix elements are all set to 0.0.

Params:
  • rows – number of rows of the matrix
  • columns – number of columns of the matrix
See Also:
Returns: RealMatrix with specified dimensions
/** * Returns a {@link RealMatrix} with specified dimensions. * <p>The type of matrix returned depends on the dimension. Below * 2<sup>12</sup> elements (i.e. 4096 elements or 64&times;64 for a * square matrix) which can be stored in a 32kB array, a {@link * Array2DRowRealMatrix} instance is built. Above this threshold a {@link * BlockRealMatrix} instance is built.</p> * <p>The matrix elements are all set to 0.0.</p> * @param rows number of rows of the matrix * @param columns number of columns of the matrix * @return RealMatrix with specified dimensions * @see #createRealMatrix(double[][]) */
public static RealMatrix createRealMatrix(final int rows, final int columns) { return (rows * columns <= 4096) ? new Array2DRowRealMatrix(rows, columns) : new BlockRealMatrix(rows, columns); }
Returns a FieldMatrix with specified dimensions.

The type of matrix returned depends on the dimension. Below 212 elements (i.e. 4096 elements or 64×64 for a square matrix), a FieldMatrix instance is built. Above this threshold a BlockFieldMatrix instance is built.

The matrix elements are all set to field.getZero().

Params:
  • field – field to which the matrix elements belong
  • rows – number of rows of the matrix
  • columns – number of columns of the matrix
Type parameters:
  • <T> – the type of the field elements
See Also:
Returns: FieldMatrix with specified dimensions
Since:2.0
/** * Returns a {@link FieldMatrix} with specified dimensions. * <p>The type of matrix returned depends on the dimension. Below * 2<sup>12</sup> elements (i.e. 4096 elements or 64&times;64 for a * square matrix), a {@link FieldMatrix} instance is built. Above * this threshold a {@link BlockFieldMatrix} instance is built.</p> * <p>The matrix elements are all set to field.getZero().</p> * @param <T> the type of the field elements * @param field field to which the matrix elements belong * @param rows number of rows of the matrix * @param columns number of columns of the matrix * @return FieldMatrix with specified dimensions * @see #createFieldMatrix(FieldElement[][]) * @since 2.0 */
public static <T extends FieldElement<T>> FieldMatrix<T> createFieldMatrix(final Field<T> field, final int rows, final int columns) { return (rows * columns <= 4096) ? new Array2DRowFieldMatrix<T>(field, rows, columns) : new BlockFieldMatrix<T>(field, rows, columns); }
Returns a RealMatrix whose entries are the the values in the the input array.

The type of matrix returned depends on the dimension. Below 212 elements (i.e. 4096 elements or 64×64 for a square matrix) which can be stored in a 32kB array, a Array2DRowRealMatrix instance is built. Above this threshold a BlockRealMatrix instance is built.

The input array is copied, not referenced.

Params:
  • data – input array
Throws:
See Also:
Returns: RealMatrix containing the values of the array
/** * Returns a {@link RealMatrix} whose entries are the the values in the * the input array. * <p>The type of matrix returned depends on the dimension. Below * 2<sup>12</sup> elements (i.e. 4096 elements or 64&times;64 for a * square matrix) which can be stored in a 32kB array, a {@link * Array2DRowRealMatrix} instance is built. Above this threshold a {@link * BlockRealMatrix} instance is built.</p> * <p>The input array is copied, not referenced.</p> * * @param data input array * @return RealMatrix containing the values of the array * @throws org.apache.commons.math3.exception.DimensionMismatchException * if {@code data} is not rectangular (not all rows have the same length). * @throws NoDataException if a row or column is empty. * @throws NullArgumentException if either {@code data} or {@code data[0]} * is {@code null}. * @throws DimensionMismatchException if {@code data} is not rectangular. * @see #createRealMatrix(int, int) */
public static RealMatrix createRealMatrix(double[][] data) throws NullArgumentException, DimensionMismatchException, NoDataException { if (data == null || data[0] == null) { throw new NullArgumentException(); } return (data.length * data[0].length <= 4096) ? new Array2DRowRealMatrix(data) : new BlockRealMatrix(data); }
Returns a FieldMatrix whose entries are the the values in the the input array.

The type of matrix returned depends on the dimension. Below 212 elements (i.e. 4096 elements or 64×64 for a square matrix), a FieldMatrix instance is built. Above this threshold a BlockFieldMatrix instance is built.

The input array is copied, not referenced.

Params:
  • data – input array
Type parameters:
  • <T> – the type of the field elements
Throws:
See Also:
Returns:a matrix containing the values of the array.
Since:2.0
/** * Returns a {@link FieldMatrix} whose entries are the the values in the * the input array. * <p>The type of matrix returned depends on the dimension. Below * 2<sup>12</sup> elements (i.e. 4096 elements or 64&times;64 for a * square matrix), a {@link FieldMatrix} instance is built. Above * this threshold a {@link BlockFieldMatrix} instance is built.</p> * <p>The input array is copied, not referenced.</p> * @param <T> the type of the field elements * @param data input array * @return a matrix containing the values of the array. * @throws org.apache.commons.math3.exception.DimensionMismatchException * if {@code data} is not rectangular (not all rows have the same length). * @throws NoDataException if a row or column is empty. * @throws NullArgumentException if either {@code data} or {@code data[0]} * is {@code null}. * @see #createFieldMatrix(Field, int, int) * @since 2.0 */
public static <T extends FieldElement<T>> FieldMatrix<T> createFieldMatrix(T[][] data) throws DimensionMismatchException, NoDataException, NullArgumentException { if (data == null || data[0] == null) { throw new NullArgumentException(); } return (data.length * data[0].length <= 4096) ? new Array2DRowFieldMatrix<T>(data) : new BlockFieldMatrix<T>(data); }
Returns dimension x dimension identity matrix.
Params:
  • dimension – dimension of identity matrix to generate
Throws:
Returns:identity matrix
Since:1.1
/** * Returns <code>dimension x dimension</code> identity matrix. * * @param dimension dimension of identity matrix to generate * @return identity matrix * @throws IllegalArgumentException if dimension is not positive * @since 1.1 */
public static RealMatrix createRealIdentityMatrix(int dimension) { final RealMatrix m = createRealMatrix(dimension, dimension); for (int i = 0; i < dimension; ++i) { m.setEntry(i, i, 1.0); } return m; }
Returns dimension x dimension identity matrix.
Params:
  • field – field to which the elements belong
  • dimension – dimension of identity matrix to generate
Type parameters:
  • <T> – the type of the field elements
Throws:
Returns:identity matrix
Since:2.0
/** * Returns <code>dimension x dimension</code> identity matrix. * * @param <T> the type of the field elements * @param field field to which the elements belong * @param dimension dimension of identity matrix to generate * @return identity matrix * @throws IllegalArgumentException if dimension is not positive * @since 2.0 */
public static <T extends FieldElement<T>> FieldMatrix<T> createFieldIdentityMatrix(final Field<T> field, final int dimension) { final T zero = field.getZero(); final T one = field.getOne(); final T[][] d = MathArrays.buildArray(field, dimension, dimension); for (int row = 0; row < dimension; row++) { final T[] dRow = d[row]; Arrays.fill(dRow, zero); dRow[row] = one; } return new Array2DRowFieldMatrix<T>(field, d, false); }
Returns a diagonal matrix with specified elements.
Params:
  • diagonal – diagonal elements of the matrix (the array elements will be copied)
Returns:diagonal matrix
Since:2.0
/** * Returns a diagonal matrix with specified elements. * * @param diagonal diagonal elements of the matrix (the array elements * will be copied) * @return diagonal matrix * @since 2.0 */
public static RealMatrix createRealDiagonalMatrix(final double[] diagonal) { final RealMatrix m = createRealMatrix(diagonal.length, diagonal.length); for (int i = 0; i < diagonal.length; ++i) { m.setEntry(i, i, diagonal[i]); } return m; }
Returns a diagonal matrix with specified elements.
Params:
  • diagonal – diagonal elements of the matrix (the array elements will be copied)
Type parameters:
  • <T> – the type of the field elements
Returns:diagonal matrix
Since:2.0
/** * Returns a diagonal matrix with specified elements. * * @param <T> the type of the field elements * @param diagonal diagonal elements of the matrix (the array elements * will be copied) * @return diagonal matrix * @since 2.0 */
public static <T extends FieldElement<T>> FieldMatrix<T> createFieldDiagonalMatrix(final T[] diagonal) { final FieldMatrix<T> m = createFieldMatrix(diagonal[0].getField(), diagonal.length, diagonal.length); for (int i = 0; i < diagonal.length; ++i) { m.setEntry(i, i, diagonal[i]); } return m; }
Creates a RealVector using the data from the input array.
Params:
  • data – the input data
Throws:
Returns:a data.length RealVector
/** * Creates a {@link RealVector} using the data from the input array. * * @param data the input data * @return a data.length RealVector * @throws NoDataException if {@code data} is empty. * @throws NullArgumentException if {@code data} is {@code null}. */
public static RealVector createRealVector(double[] data) throws NoDataException, NullArgumentException { if (data == null) { throw new NullArgumentException(); } return new ArrayRealVector(data, true); }
Creates a FieldVector using the data from the input array.
Params:
  • data – the input data
Type parameters:
  • <T> – the type of the field elements
Throws:
Returns:a data.length FieldVector
/** * Creates a {@link FieldVector} using the data from the input array. * * @param <T> the type of the field elements * @param data the input data * @return a data.length FieldVector * @throws NoDataException if {@code data} is empty. * @throws NullArgumentException if {@code data} is {@code null}. * @throws ZeroException if {@code data} has 0 elements */
public static <T extends FieldElement<T>> FieldVector<T> createFieldVector(final T[] data) throws NoDataException, NullArgumentException, ZeroException { if (data == null) { throw new NullArgumentException(); } if (data.length == 0) { throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT); } return new ArrayFieldVector<T>(data[0].getField(), data, true); }
Create a row RealMatrix using the data from the input array.
Params:
  • rowData – the input row data
Throws:
Returns:a 1 x rowData.length RealMatrix
/** * Create a row {@link RealMatrix} using the data from the input * array. * * @param rowData the input row data * @return a 1 x rowData.length RealMatrix * @throws NoDataException if {@code rowData} is empty. * @throws NullArgumentException if {@code rowData} is {@code null}. */
public static RealMatrix createRowRealMatrix(double[] rowData) throws NoDataException, NullArgumentException { if (rowData == null) { throw new NullArgumentException(); } final int nCols = rowData.length; final RealMatrix m = createRealMatrix(1, nCols); for (int i = 0; i < nCols; ++i) { m.setEntry(0, i, rowData[i]); } return m; }
Create a row FieldMatrix using the data from the input array.
Params:
  • rowData – the input row data
Type parameters:
  • <T> – the type of the field elements
Throws:
Returns:a 1 x rowData.length FieldMatrix
/** * Create a row {@link FieldMatrix} using the data from the input * array. * * @param <T> the type of the field elements * @param rowData the input row data * @return a 1 x rowData.length FieldMatrix * @throws NoDataException if {@code rowData} is empty. * @throws NullArgumentException if {@code rowData} is {@code null}. */
public static <T extends FieldElement<T>> FieldMatrix<T> createRowFieldMatrix(final T[] rowData) throws NoDataException, NullArgumentException { if (rowData == null) { throw new NullArgumentException(); } final int nCols = rowData.length; if (nCols == 0) { throw new NoDataException(LocalizedFormats.AT_LEAST_ONE_COLUMN); } final FieldMatrix<T> m = createFieldMatrix(rowData[0].getField(), 1, nCols); for (int i = 0; i < nCols; ++i) { m.setEntry(0, i, rowData[i]); } return m; }
Creates a column RealMatrix using the data from the input array.
Params:
  • columnData – the input column data
Throws:
Returns:a columnData x 1 RealMatrix
/** * Creates a column {@link RealMatrix} using the data from the input * array. * * @param columnData the input column data * @return a columnData x 1 RealMatrix * @throws NoDataException if {@code columnData} is empty. * @throws NullArgumentException if {@code columnData} is {@code null}. */
public static RealMatrix createColumnRealMatrix(double[] columnData) throws NoDataException, NullArgumentException { if (columnData == null) { throw new NullArgumentException(); } final int nRows = columnData.length; final RealMatrix m = createRealMatrix(nRows, 1); for (int i = 0; i < nRows; ++i) { m.setEntry(i, 0, columnData[i]); } return m; }
Creates a column FieldMatrix using the data from the input array.
Params:
  • columnData – the input column data
Type parameters:
  • <T> – the type of the field elements
Throws:
Returns:a columnData x 1 FieldMatrix
/** * Creates a column {@link FieldMatrix} using the data from the input * array. * * @param <T> the type of the field elements * @param columnData the input column data * @return a columnData x 1 FieldMatrix * @throws NoDataException if {@code data} is empty. * @throws NullArgumentException if {@code columnData} is {@code null}. */
public static <T extends FieldElement<T>> FieldMatrix<T> createColumnFieldMatrix(final T[] columnData) throws NoDataException, NullArgumentException { if (columnData == null) { throw new NullArgumentException(); } final int nRows = columnData.length; if (nRows == 0) { throw new NoDataException(LocalizedFormats.AT_LEAST_ONE_ROW); } final FieldMatrix<T> m = createFieldMatrix(columnData[0].getField(), nRows, 1); for (int i = 0; i < nRows; ++i) { m.setEntry(i, 0, columnData[i]); } return m; }
Checks whether a matrix is symmetric, within a given relative tolerance.
Params:
  • matrix – Matrix to check.
  • relativeTolerance – Tolerance of the symmetry check.
  • raiseException – If true, an exception will be raised if the matrix is not symmetric.
Throws:
Returns:true if matrix is symmetric.
/** * Checks whether a matrix is symmetric, within a given relative tolerance. * * @param matrix Matrix to check. * @param relativeTolerance Tolerance of the symmetry check. * @param raiseException If {@code true}, an exception will be raised if * the matrix is not symmetric. * @return {@code true} if {@code matrix} is symmetric. * @throws NonSquareMatrixException if the matrix is not square. * @throws NonSymmetricMatrixException if the matrix is not symmetric. */
private static boolean isSymmetricInternal(RealMatrix matrix, double relativeTolerance, boolean raiseException) { final int rows = matrix.getRowDimension(); if (rows != matrix.getColumnDimension()) { if (raiseException) { throw new NonSquareMatrixException(rows, matrix.getColumnDimension()); } else { return false; } } for (int i = 0; i < rows; i++) { for (int j = i + 1; j < rows; j++) { final double mij = matrix.getEntry(i, j); final double mji = matrix.getEntry(j, i); if (FastMath.abs(mij - mji) > FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * relativeTolerance) { if (raiseException) { throw new NonSymmetricMatrixException(i, j, relativeTolerance); } else { return false; } } } } return true; }
Checks whether a matrix is symmetric.
Params:
  • matrix – Matrix to check.
  • eps – Relative tolerance.
Throws:
Since:3.1
/** * Checks whether a matrix is symmetric. * * @param matrix Matrix to check. * @param eps Relative tolerance. * @throws NonSquareMatrixException if the matrix is not square. * @throws NonSymmetricMatrixException if the matrix is not symmetric. * @since 3.1 */
public static void checkSymmetric(RealMatrix matrix, double eps) { isSymmetricInternal(matrix, eps, true); }
Checks whether a matrix is symmetric.
Params:
  • matrix – Matrix to check.
  • eps – Relative tolerance.
Returns:true if matrix is symmetric.
Since:3.1
/** * Checks whether a matrix is symmetric. * * @param matrix Matrix to check. * @param eps Relative tolerance. * @return {@code true} if {@code matrix} is symmetric. * @since 3.1 */
public static boolean isSymmetric(RealMatrix matrix, double eps) { return isSymmetricInternal(matrix, eps, false); }
Check if matrix indices are valid.
Params:
  • m – Matrix.
  • row – Row index to check.
  • column – Column index to check.
Throws:
/** * Check if matrix indices are valid. * * @param m Matrix. * @param row Row index to check. * @param column Column index to check. * @throws OutOfRangeException if {@code row} or {@code column} is not * a valid index. */
public static void checkMatrixIndex(final AnyMatrix m, final int row, final int column) throws OutOfRangeException { checkRowIndex(m, row); checkColumnIndex(m, column); }
Check if a row index is valid.
Params:
  • m – Matrix.
  • row – Row index to check.
Throws:
/** * Check if a row index is valid. * * @param m Matrix. * @param row Row index to check. * @throws OutOfRangeException if {@code row} is not a valid index. */
public static void checkRowIndex(final AnyMatrix m, final int row) throws OutOfRangeException { if (row < 0 || row >= m.getRowDimension()) { throw new OutOfRangeException(LocalizedFormats.ROW_INDEX, row, 0, m.getRowDimension() - 1); } }
Check if a column index is valid.
Params:
  • m – Matrix.
  • column – Column index to check.
Throws:
/** * Check if a column index is valid. * * @param m Matrix. * @param column Column index to check. * @throws OutOfRangeException if {@code column} is not a valid index. */
public static void checkColumnIndex(final AnyMatrix m, final int column) throws OutOfRangeException { if (column < 0 || column >= m.getColumnDimension()) { throw new OutOfRangeException(LocalizedFormats.COLUMN_INDEX, column, 0, m.getColumnDimension() - 1); } }
Check if submatrix ranges indices are valid. Rows and columns are indicated counting from 0 to n - 1.
Params:
  • m – Matrix.
  • startRow – Initial row index.
  • endRow – Final row index.
  • startColumn – Initial column index.
  • endColumn – Final column index.
Throws:
/** * Check if submatrix ranges indices are valid. * Rows and columns are indicated counting from 0 to {@code n - 1}. * * @param m Matrix. * @param startRow Initial row index. * @param endRow Final row index. * @param startColumn Initial column index. * @param endColumn Final column index. * @throws OutOfRangeException if the indices are invalid. * @throws NumberIsTooSmallException if {@code endRow < startRow} or * {@code endColumn < startColumn}. */
public static void checkSubMatrixIndex(final AnyMatrix m, final int startRow, final int endRow, final int startColumn, final int endColumn) throws NumberIsTooSmallException, OutOfRangeException { checkRowIndex(m, startRow); checkRowIndex(m, endRow); if (endRow < startRow) { throw new NumberIsTooSmallException(LocalizedFormats.INITIAL_ROW_AFTER_FINAL_ROW, endRow, startRow, false); } checkColumnIndex(m, startColumn); checkColumnIndex(m, endColumn); if (endColumn < startColumn) { throw new NumberIsTooSmallException(LocalizedFormats.INITIAL_COLUMN_AFTER_FINAL_COLUMN, endColumn, startColumn, false); } }
Check if submatrix ranges indices are valid. Rows and columns are indicated counting from 0 to n-1.
Params:
  • m – Matrix.
  • selectedRows – Array of row indices.
  • selectedColumns – Array of column indices.
Throws:
/** * Check if submatrix ranges indices are valid. * Rows and columns are indicated counting from 0 to n-1. * * @param m Matrix. * @param selectedRows Array of row indices. * @param selectedColumns Array of column indices. * @throws NullArgumentException if {@code selectedRows} or * {@code selectedColumns} are {@code null}. * @throws NoDataException if the row or column selections are empty (zero * length). * @throws OutOfRangeException if row or column selections are not valid. */
public static void checkSubMatrixIndex(final AnyMatrix m, final int[] selectedRows, final int[] selectedColumns) throws NoDataException, NullArgumentException, OutOfRangeException { if (selectedRows == null) { throw new NullArgumentException(); } if (selectedColumns == null) { throw new NullArgumentException(); } if (selectedRows.length == 0) { throw new NoDataException(LocalizedFormats.EMPTY_SELECTED_ROW_INDEX_ARRAY); } if (selectedColumns.length == 0) { throw new NoDataException(LocalizedFormats.EMPTY_SELECTED_COLUMN_INDEX_ARRAY); } for (final int row : selectedRows) { checkRowIndex(m, row); } for (final int column : selectedColumns) { checkColumnIndex(m, column); } }
Check if matrices are addition compatible.
Params:
  • left – Left hand side matrix.
  • right – Right hand side matrix.
Throws:
/** * Check if matrices are addition compatible. * * @param left Left hand side matrix. * @param right Right hand side matrix. * @throws MatrixDimensionMismatchException if the matrices are not addition * compatible. */
public static void checkAdditionCompatible(final AnyMatrix left, final AnyMatrix right) throws MatrixDimensionMismatchException { if ((left.getRowDimension() != right.getRowDimension()) || (left.getColumnDimension() != right.getColumnDimension())) { throw new MatrixDimensionMismatchException(left.getRowDimension(), left.getColumnDimension(), right.getRowDimension(), right.getColumnDimension()); } }
Check if matrices are subtraction compatible
Params:
  • left – Left hand side matrix.
  • right – Right hand side matrix.
Throws:
/** * Check if matrices are subtraction compatible * * @param left Left hand side matrix. * @param right Right hand side matrix. * @throws MatrixDimensionMismatchException if the matrices are not addition * compatible. */
public static void checkSubtractionCompatible(final AnyMatrix left, final AnyMatrix right) throws MatrixDimensionMismatchException { if ((left.getRowDimension() != right.getRowDimension()) || (left.getColumnDimension() != right.getColumnDimension())) { throw new MatrixDimensionMismatchException(left.getRowDimension(), left.getColumnDimension(), right.getRowDimension(), right.getColumnDimension()); } }
Check if matrices are multiplication compatible
Params:
  • left – Left hand side matrix.
  • right – Right hand side matrix.
Throws:
/** * Check if matrices are multiplication compatible * * @param left Left hand side matrix. * @param right Right hand side matrix. * @throws DimensionMismatchException if matrices are not multiplication * compatible. */
public static void checkMultiplicationCompatible(final AnyMatrix left, final AnyMatrix right) throws DimensionMismatchException { if (left.getColumnDimension() != right.getRowDimension()) { throw new DimensionMismatchException(left.getColumnDimension(), right.getRowDimension()); } }
Convert a FieldMatrix/Fraction matrix to a RealMatrix.
Params:
  • m – Matrix to convert.
Returns:the converted matrix.
/** * Convert a {@link FieldMatrix}/{@link Fraction} matrix to a {@link RealMatrix}. * @param m Matrix to convert. * @return the converted matrix. */
public static Array2DRowRealMatrix fractionMatrixToRealMatrix(final FieldMatrix<Fraction> m) { final FractionMatrixConverter converter = new FractionMatrixConverter(); m.walkInOptimizedOrder(converter); return converter.getConvertedMatrix(); }
Converter for FieldMatrix/Fraction.
/** Converter for {@link FieldMatrix}/{@link Fraction}. */
private static class FractionMatrixConverter extends DefaultFieldMatrixPreservingVisitor<Fraction> {
Converted array.
/** Converted array. */
private double[][] data;
Simple constructor.
/** Simple constructor. */
FractionMatrixConverter() { super(Fraction.ZERO); }
{@inheritDoc}
/** {@inheritDoc} */
@Override public void start(int rows, int columns, int startRow, int endRow, int startColumn, int endColumn) { data = new double[rows][columns]; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public void visit(int row, int column, Fraction value) { data[row][column] = value.doubleValue(); }
Get the converted matrix.
Returns:the converted matrix.
/** * Get the converted matrix. * * @return the converted matrix. */
Array2DRowRealMatrix getConvertedMatrix() { return new Array2DRowRealMatrix(data, false); } }
Convert a FieldMatrix/BigFraction matrix to a RealMatrix.
Params:
  • m – Matrix to convert.
Returns:the converted matrix.
/** * Convert a {@link FieldMatrix}/{@link BigFraction} matrix to a {@link RealMatrix}. * * @param m Matrix to convert. * @return the converted matrix. */
public static Array2DRowRealMatrix bigFractionMatrixToRealMatrix(final FieldMatrix<BigFraction> m) { final BigFractionMatrixConverter converter = new BigFractionMatrixConverter(); m.walkInOptimizedOrder(converter); return converter.getConvertedMatrix(); }
Converter for FieldMatrix/BigFraction.
/** Converter for {@link FieldMatrix}/{@link BigFraction}. */
private static class BigFractionMatrixConverter extends DefaultFieldMatrixPreservingVisitor<BigFraction> {
Converted array.
/** Converted array. */
private double[][] data;
Simple constructor.
/** Simple constructor. */
BigFractionMatrixConverter() { super(BigFraction.ZERO); }
{@inheritDoc}
/** {@inheritDoc} */
@Override public void start(int rows, int columns, int startRow, int endRow, int startColumn, int endColumn) { data = new double[rows][columns]; }
{@inheritDoc}
/** {@inheritDoc} */
@Override public void visit(int row, int column, BigFraction value) { data[row][column] = value.doubleValue(); }
Get the converted matrix.
Returns:the converted matrix.
/** * Get the converted matrix. * * @return the converted matrix. */
Array2DRowRealMatrix getConvertedMatrix() { return new Array2DRowRealMatrix(data, false); } }
Serialize a RealVector.

This method is intended to be called from within a private writeObject method (after a call to oos.defaultWriteObject()) in a class that has a RealVector field, which should be declared transient. This way, the default handling does not serialize the vector (the RealVector interface is not serializable by default) but this method does serialize it specifically.

The following example shows how a simple class with a name and a real vector should be written:


public class NamedVector implements Serializable {
    private final String name;
    private final transient RealVector coefficients;
    // omitted constructors, getters ...
    private void writeObject(ObjectOutputStream oos) throws IOException {
        oos.defaultWriteObject();  // takes care of name field
        MatrixUtils.serializeRealVector(coefficients, oos);
    }
    private void readObject(ObjectInputStream ois) throws ClassNotFoundException, IOException {
        ois.defaultReadObject();  // takes care of name field
        MatrixUtils.deserializeRealVector(this, "coefficients", ois);
    }
}

Params:
  • vector – real vector to serialize
  • oos – stream where the real vector should be written
Throws:
See Also:
/** Serialize a {@link RealVector}. * <p> * This method is intended to be called from within a private * <code>writeObject</code> method (after a call to * <code>oos.defaultWriteObject()</code>) in a class that has a * {@link RealVector} field, which should be declared <code>transient</code>. * This way, the default handling does not serialize the vector (the {@link * RealVector} interface is not serializable by default) but this method does * serialize it specifically. * </p> * <p> * The following example shows how a simple class with a name and a real vector * should be written: * <pre><code> * public class NamedVector implements Serializable { * * private final String name; * private final transient RealVector coefficients; * * // omitted constructors, getters ... * * private void writeObject(ObjectOutputStream oos) throws IOException { * oos.defaultWriteObject(); // takes care of name field * MatrixUtils.serializeRealVector(coefficients, oos); * } * * private void readObject(ObjectInputStream ois) throws ClassNotFoundException, IOException { * ois.defaultReadObject(); // takes care of name field * MatrixUtils.deserializeRealVector(this, "coefficients", ois); * } * * } * </code></pre> * </p> * * @param vector real vector to serialize * @param oos stream where the real vector should be written * @exception IOException if object cannot be written to stream * @see #deserializeRealVector(Object, String, ObjectInputStream) */
public static void serializeRealVector(final RealVector vector, final ObjectOutputStream oos) throws IOException { final int n = vector.getDimension(); oos.writeInt(n); for (int i = 0; i < n; ++i) { oos.writeDouble(vector.getEntry(i)); } }
Deserialize a RealVector field in a class.

This method is intended to be called from within a private readObject method (after a call to ois.defaultReadObject()) in a class that has a RealVector field, which should be declared transient. This way, the default handling does not deserialize the vector (the RealVector interface is not serializable by default) but this method does deserialize it specifically.

Params:
  • instance – instance in which the field must be set up
  • fieldName – name of the field within the class (may be private and final)
  • ois – stream from which the real vector should be read
Throws:
See Also:
/** Deserialize a {@link RealVector} field in a class. * <p> * This method is intended to be called from within a private * <code>readObject</code> method (after a call to * <code>ois.defaultReadObject()</code>) in a class that has a * {@link RealVector} field, which should be declared <code>transient</code>. * This way, the default handling does not deserialize the vector (the {@link * RealVector} interface is not serializable by default) but this method does * deserialize it specifically. * </p> * @param instance instance in which the field must be set up * @param fieldName name of the field within the class (may be private and final) * @param ois stream from which the real vector should be read * @exception ClassNotFoundException if a class in the stream cannot be found * @exception IOException if object cannot be read from the stream * @see #serializeRealVector(RealVector, ObjectOutputStream) */
public static void deserializeRealVector(final Object instance, final String fieldName, final ObjectInputStream ois) throws ClassNotFoundException, IOException { try { // read the vector data final int n = ois.readInt(); final double[] data = new double[n]; for (int i = 0; i < n; ++i) { data[i] = ois.readDouble(); } // create the instance final RealVector vector = new ArrayRealVector(data, false); // set up the field final java.lang.reflect.Field f = instance.getClass().getDeclaredField(fieldName); f.setAccessible(true); f.set(instance, vector); } catch (NoSuchFieldException nsfe) { IOException ioe = new IOException(); ioe.initCause(nsfe); throw ioe; } catch (IllegalAccessException iae) { IOException ioe = new IOException(); ioe.initCause(iae); throw ioe; } }
Serialize a RealMatrix.

This method is intended to be called from within a private writeObject method (after a call to oos.defaultWriteObject()) in a class that has a RealMatrix field, which should be declared transient. This way, the default handling does not serialize the matrix (the RealMatrix interface is not serializable by default) but this method does serialize it specifically.

The following example shows how a simple class with a name and a real matrix should be written:


public class NamedMatrix implements Serializable {
    private final String name;
    private final transient RealMatrix coefficients;
    // omitted constructors, getters ...
    private void writeObject(ObjectOutputStream oos) throws IOException {
        oos.defaultWriteObject();  // takes care of name field
        MatrixUtils.serializeRealMatrix(coefficients, oos);
    }
    private void readObject(ObjectInputStream ois) throws ClassNotFoundException, IOException {
        ois.defaultReadObject();  // takes care of name field
        MatrixUtils.deserializeRealMatrix(this, "coefficients", ois);
    }
}

Params:
  • matrix – real matrix to serialize
  • oos – stream where the real matrix should be written
Throws:
See Also:
/** Serialize a {@link RealMatrix}. * <p> * This method is intended to be called from within a private * <code>writeObject</code> method (after a call to * <code>oos.defaultWriteObject()</code>) in a class that has a * {@link RealMatrix} field, which should be declared <code>transient</code>. * This way, the default handling does not serialize the matrix (the {@link * RealMatrix} interface is not serializable by default) but this method does * serialize it specifically. * </p> * <p> * The following example shows how a simple class with a name and a real matrix * should be written: * <pre><code> * public class NamedMatrix implements Serializable { * * private final String name; * private final transient RealMatrix coefficients; * * // omitted constructors, getters ... * * private void writeObject(ObjectOutputStream oos) throws IOException { * oos.defaultWriteObject(); // takes care of name field * MatrixUtils.serializeRealMatrix(coefficients, oos); * } * * private void readObject(ObjectInputStream ois) throws ClassNotFoundException, IOException { * ois.defaultReadObject(); // takes care of name field * MatrixUtils.deserializeRealMatrix(this, "coefficients", ois); * } * * } * </code></pre> * </p> * * @param matrix real matrix to serialize * @param oos stream where the real matrix should be written * @exception IOException if object cannot be written to stream * @see #deserializeRealMatrix(Object, String, ObjectInputStream) */
public static void serializeRealMatrix(final RealMatrix matrix, final ObjectOutputStream oos) throws IOException { final int n = matrix.getRowDimension(); final int m = matrix.getColumnDimension(); oos.writeInt(n); oos.writeInt(m); for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { oos.writeDouble(matrix.getEntry(i, j)); } } }
Deserialize a RealMatrix field in a class.

This method is intended to be called from within a private readObject method (after a call to ois.defaultReadObject()) in a class that has a RealMatrix field, which should be declared transient. This way, the default handling does not deserialize the matrix (the RealMatrix interface is not serializable by default) but this method does deserialize it specifically.

Params:
  • instance – instance in which the field must be set up
  • fieldName – name of the field within the class (may be private and final)
  • ois – stream from which the real matrix should be read
Throws:
See Also:
/** Deserialize a {@link RealMatrix} field in a class. * <p> * This method is intended to be called from within a private * <code>readObject</code> method (after a call to * <code>ois.defaultReadObject()</code>) in a class that has a * {@link RealMatrix} field, which should be declared <code>transient</code>. * This way, the default handling does not deserialize the matrix (the {@link * RealMatrix} interface is not serializable by default) but this method does * deserialize it specifically. * </p> * @param instance instance in which the field must be set up * @param fieldName name of the field within the class (may be private and final) * @param ois stream from which the real matrix should be read * @exception ClassNotFoundException if a class in the stream cannot be found * @exception IOException if object cannot be read from the stream * @see #serializeRealMatrix(RealMatrix, ObjectOutputStream) */
public static void deserializeRealMatrix(final Object instance, final String fieldName, final ObjectInputStream ois) throws ClassNotFoundException, IOException { try { // read the matrix data final int n = ois.readInt(); final int m = ois.readInt(); final double[][] data = new double[n][m]; for (int i = 0; i < n; ++i) { final double[] dataI = data[i]; for (int j = 0; j < m; ++j) { dataI[j] = ois.readDouble(); } } // create the instance final RealMatrix matrix = new Array2DRowRealMatrix(data, false); // set up the field final java.lang.reflect.Field f = instance.getClass().getDeclaredField(fieldName); f.setAccessible(true); f.set(instance, matrix); } catch (NoSuchFieldException nsfe) { IOException ioe = new IOException(); ioe.initCause(nsfe); throw ioe; } catch (IllegalAccessException iae) { IOException ioe = new IOException(); ioe.initCause(iae); throw ioe; } }
Solve a system of composed of a Lower Triangular Matrix RealMatrix.

This method is called to solve systems of equations which are of the lower triangular form. The matrix RealMatrix is assumed, though not checked, to be in lower triangular form. The vector RealVector is overwritten with the solution. The matrix is checked that it is square and its dimensions match the length of the vector.

Params:
  • rm – RealMatrix which is lower triangular
  • b – RealVector this is overwritten
Throws:
/**Solve a system of composed of a Lower Triangular Matrix * {@link RealMatrix}. * <p> * This method is called to solve systems of equations which are * of the lower triangular form. The matrix {@link RealMatrix} * is assumed, though not checked, to be in lower triangular form. * The vector {@link RealVector} is overwritten with the solution. * The matrix is checked that it is square and its dimensions match * the length of the vector. * </p> * @param rm RealMatrix which is lower triangular * @param b RealVector this is overwritten * @throws DimensionMismatchException if the matrix and vector are not * conformable * @throws NonSquareMatrixException if the matrix {@code rm} is not square * @throws MathArithmeticException if the absolute value of one of the diagonal * coefficient of {@code rm} is lower than {@link Precision#SAFE_MIN} */
public static void solveLowerTriangularSystem(RealMatrix rm, RealVector b) throws DimensionMismatchException, MathArithmeticException, NonSquareMatrixException { if ((rm == null) || (b == null) || ( rm.getRowDimension() != b.getDimension())) { throw new DimensionMismatchException( (rm == null) ? 0 : rm.getRowDimension(), (b == null) ? 0 : b.getDimension()); } if( rm.getColumnDimension() != rm.getRowDimension() ){ throw new NonSquareMatrixException(rm.getRowDimension(), rm.getColumnDimension()); } int rows = rm.getRowDimension(); for( int i = 0 ; i < rows ; i++ ){ double diag = rm.getEntry(i, i); if( FastMath.abs(diag) < Precision.SAFE_MIN ){ throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR); } double bi = b.getEntry(i)/diag; b.setEntry(i, bi ); for( int j = i+1; j< rows; j++ ){ b.setEntry(j, b.getEntry(j)-bi*rm.getEntry(j,i) ); } } }
Solver a system composed of an Upper Triangular Matrix RealMatrix.

This method is called to solve systems of equations which are of the lower triangular form. The matrix RealMatrix is assumed, though not checked, to be in upper triangular form. The vector RealVector is overwritten with the solution. The matrix is checked that it is square and its dimensions match the length of the vector.

Params:
  • rm – RealMatrix which is upper triangular
  • b – RealVector this is overwritten
Throws:
/** Solver a system composed of an Upper Triangular Matrix * {@link RealMatrix}. * <p> * This method is called to solve systems of equations which are * of the lower triangular form. The matrix {@link RealMatrix} * is assumed, though not checked, to be in upper triangular form. * The vector {@link RealVector} is overwritten with the solution. * The matrix is checked that it is square and its dimensions match * the length of the vector. * </p> * @param rm RealMatrix which is upper triangular * @param b RealVector this is overwritten * @throws DimensionMismatchException if the matrix and vector are not * conformable * @throws NonSquareMatrixException if the matrix {@code rm} is not * square * @throws MathArithmeticException if the absolute value of one of the diagonal * coefficient of {@code rm} is lower than {@link Precision#SAFE_MIN} */
public static void solveUpperTriangularSystem(RealMatrix rm, RealVector b) throws DimensionMismatchException, MathArithmeticException, NonSquareMatrixException { if ((rm == null) || (b == null) || ( rm.getRowDimension() != b.getDimension())) { throw new DimensionMismatchException( (rm == null) ? 0 : rm.getRowDimension(), (b == null) ? 0 : b.getDimension()); } if( rm.getColumnDimension() != rm.getRowDimension() ){ throw new NonSquareMatrixException(rm.getRowDimension(), rm.getColumnDimension()); } int rows = rm.getRowDimension(); for( int i = rows-1 ; i >-1 ; i-- ){ double diag = rm.getEntry(i, i); if( FastMath.abs(diag) < Precision.SAFE_MIN ){ throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR); } double bi = b.getEntry(i)/diag; b.setEntry(i, bi ); for( int j = i-1; j>-1; j-- ){ b.setEntry(j, b.getEntry(j)-bi*rm.getEntry(j,i) ); } } }
Computes the inverse of the given matrix by splitting it into 4 sub-matrices.
Params:
  • m – Matrix whose inverse must be computed.
  • splitIndex – Index that determines the "split" line and column. The element corresponding to this index will part of the upper-left sub-matrix.
Throws:
Returns:the inverse of m.
/** * Computes the inverse of the given matrix by splitting it into * 4 sub-matrices. * * @param m Matrix whose inverse must be computed. * @param splitIndex Index that determines the "split" line and * column. * The element corresponding to this index will part of the * upper-left sub-matrix. * @return the inverse of {@code m}. * @throws NonSquareMatrixException if {@code m} is not square. */
public static RealMatrix blockInverse(RealMatrix m, int splitIndex) { final int n = m.getRowDimension(); if (m.getColumnDimension() != n) { throw new NonSquareMatrixException(m.getRowDimension(), m.getColumnDimension()); } final int splitIndex1 = splitIndex + 1; final RealMatrix a = m.getSubMatrix(0, splitIndex, 0, splitIndex); final RealMatrix b = m.getSubMatrix(0, splitIndex, splitIndex1, n - 1); final RealMatrix c = m.getSubMatrix(splitIndex1, n - 1, 0, splitIndex); final RealMatrix d = m.getSubMatrix(splitIndex1, n - 1, splitIndex1, n - 1); final SingularValueDecomposition aDec = new SingularValueDecomposition(a); final DecompositionSolver aSolver = aDec.getSolver(); if (!aSolver.isNonSingular()) { throw new SingularMatrixException(); } final RealMatrix aInv = aSolver.getInverse(); final SingularValueDecomposition dDec = new SingularValueDecomposition(d); final DecompositionSolver dSolver = dDec.getSolver(); if (!dSolver.isNonSingular()) { throw new SingularMatrixException(); } final RealMatrix dInv = dSolver.getInverse(); final RealMatrix tmp1 = a.subtract(b.multiply(dInv).multiply(c)); final SingularValueDecomposition tmp1Dec = new SingularValueDecomposition(tmp1); final DecompositionSolver tmp1Solver = tmp1Dec.getSolver(); if (!tmp1Solver.isNonSingular()) { throw new SingularMatrixException(); } final RealMatrix result00 = tmp1Solver.getInverse(); final RealMatrix tmp2 = d.subtract(c.multiply(aInv).multiply(b)); final SingularValueDecomposition tmp2Dec = new SingularValueDecomposition(tmp2); final DecompositionSolver tmp2Solver = tmp2Dec.getSolver(); if (!tmp2Solver.isNonSingular()) { throw new SingularMatrixException(); } final RealMatrix result11 = tmp2Solver.getInverse(); final RealMatrix result01 = aInv.multiply(b).multiply(result11).scalarMultiply(-1); final RealMatrix result10 = dInv.multiply(c).multiply(result00).scalarMultiply(-1); final RealMatrix result = new Array2DRowRealMatrix(n, n); result.setSubMatrix(result00.getData(), 0, 0); result.setSubMatrix(result01.getData(), 0, splitIndex1); result.setSubMatrix(result10.getData(), splitIndex1, 0); result.setSubMatrix(result11.getData(), splitIndex1, splitIndex1); return result; }
Computes the inverse of the given matrix.

By default, the inverse of the matrix is computed using the QR-decomposition, unless a more efficient method can be determined for the input matrix.

Note: this method will use a singularity threshold of 0, use inverse(RealMatrix, double) if a different threshold is needed.

Params:
  • matrix – Matrix whose inverse shall be computed
Throws:
Returns:the inverse of matrix
Since:3.3
/** * Computes the inverse of the given matrix. * <p> * By default, the inverse of the matrix is computed using the QR-decomposition, * unless a more efficient method can be determined for the input matrix. * <p> * Note: this method will use a singularity threshold of 0, * use {@link #inverse(RealMatrix, double)} if a different threshold is needed. * * @param matrix Matrix whose inverse shall be computed * @return the inverse of {@code matrix} * @throws NullArgumentException if {@code matrix} is {@code null} * @throws SingularMatrixException if m is singular * @throws NonSquareMatrixException if matrix is not square * @since 3.3 */
public static RealMatrix inverse(RealMatrix matrix) throws NullArgumentException, SingularMatrixException, NonSquareMatrixException { return inverse(matrix, 0); }
Computes the inverse of the given matrix.

By default, the inverse of the matrix is computed using the QR-decomposition, unless a more efficient method can be determined for the input matrix.

Params:
  • matrix – Matrix whose inverse shall be computed
  • threshold – Singularity threshold
Throws:
Returns:the inverse of m
Since:3.3
/** * Computes the inverse of the given matrix. * <p> * By default, the inverse of the matrix is computed using the QR-decomposition, * unless a more efficient method can be determined for the input matrix. * * @param matrix Matrix whose inverse shall be computed * @param threshold Singularity threshold * @return the inverse of {@code m} * @throws NullArgumentException if {@code matrix} is {@code null} * @throws SingularMatrixException if matrix is singular * @throws NonSquareMatrixException if matrix is not square * @since 3.3 */
public static RealMatrix inverse(RealMatrix matrix, double threshold) throws NullArgumentException, SingularMatrixException, NonSquareMatrixException { MathUtils.checkNotNull(matrix); if (!matrix.isSquare()) { throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension()); } if (matrix instanceof DiagonalMatrix) { return ((DiagonalMatrix) matrix).inverse(threshold); } else { QRDecomposition decomposition = new QRDecomposition(matrix, threshold); return decomposition.getSolver().getInverse(); } } }