/*
 * Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.reflect;

import java.lang.annotation.*;
import java.util.Map;
import java.util.Objects;
import java.util.StringJoiner;

import jdk.internal.misc.SharedSecrets;
import sun.reflect.annotation.AnnotationParser;
import sun.reflect.annotation.AnnotationSupport;
import sun.reflect.annotation.TypeAnnotationParser;
import sun.reflect.annotation.TypeAnnotation;
import sun.reflect.generics.repository.ConstructorRepository;

A shared superclass for the common functionality of Method and Constructor.
Since:1.8
/** * A shared superclass for the common functionality of {@link Method} * and {@link Constructor}. * * @since 1.8 */
public abstract class Executable extends AccessibleObject implements Member, GenericDeclaration { /* * Only grant package-visibility to the constructor. */ Executable() {}
Accessor method to allow code sharing
/** * Accessor method to allow code sharing */
abstract byte[] getAnnotationBytes();
Does the Executable have generic information.
/** * Does the Executable have generic information. */
abstract boolean hasGenericInformation(); abstract ConstructorRepository getGenericInfo(); boolean equalParamTypes(Class<?>[] params1, Class<?>[] params2) { /* Avoid unnecessary cloning */ if (params1.length == params2.length) { for (int i = 0; i < params1.length; i++) { if (params1[i] != params2[i]) return false; } return true; } return false; } Annotation[][] parseParameterAnnotations(byte[] parameterAnnotations) { return AnnotationParser.parseParameterAnnotations( parameterAnnotations, SharedSecrets.getJavaLangAccess(). getConstantPool(getDeclaringClass()), getDeclaringClass()); } void printModifiersIfNonzero(StringBuilder sb, int mask, boolean isDefault) { int mod = getModifiers() & mask; if (mod != 0 && !isDefault) { sb.append(Modifier.toString(mod)).append(' '); } else { int access_mod = mod & Modifier.ACCESS_MODIFIERS; if (access_mod != 0) sb.append(Modifier.toString(access_mod)).append(' '); if (isDefault) sb.append("default "); mod = (mod & ~Modifier.ACCESS_MODIFIERS); if (mod != 0) sb.append(Modifier.toString(mod)).append(' '); } } String sharedToString(int modifierMask, boolean isDefault, Class<?>[] parameterTypes, Class<?>[] exceptionTypes) { try { StringBuilder sb = new StringBuilder(); printModifiersIfNonzero(sb, modifierMask, isDefault); specificToStringHeader(sb); sb.append('('); StringJoiner sj = new StringJoiner(","); for (Class<?> parameterType : parameterTypes) { sj.add(parameterType.getTypeName()); } sb.append(sj.toString()); sb.append(')'); if (exceptionTypes.length > 0) { StringJoiner joiner = new StringJoiner(",", " throws ", ""); for (Class<?> exceptionType : exceptionTypes) { joiner.add(exceptionType.getTypeName()); } sb.append(joiner.toString()); } return sb.toString(); } catch (Exception e) { return "<" + e + ">"; } }
Generate toString header information specific to a method or constructor.
/** * Generate toString header information specific to a method or * constructor. */
abstract void specificToStringHeader(StringBuilder sb); String sharedToGenericString(int modifierMask, boolean isDefault) { try { StringBuilder sb = new StringBuilder(); printModifiersIfNonzero(sb, modifierMask, isDefault); TypeVariable<?>[] typeparms = getTypeParameters(); if (typeparms.length > 0) { StringJoiner sj = new StringJoiner(",", "<", "> "); for(TypeVariable<?> typeparm: typeparms) { sj.add(typeparm.getTypeName()); } sb.append(sj.toString()); } specificToGenericStringHeader(sb); sb.append('('); StringJoiner sj = new StringJoiner(","); Type[] params = getGenericParameterTypes(); for (int j = 0; j < params.length; j++) { String param = params[j].getTypeName(); if (isVarArgs() && (j == params.length - 1)) // replace T[] with T... param = param.replaceFirst("\\[\\]$", "..."); sj.add(param); } sb.append(sj.toString()); sb.append(')'); Type[] exceptionTypes = getGenericExceptionTypes(); if (exceptionTypes.length > 0) { StringJoiner joiner = new StringJoiner(",", " throws ", ""); for (Type exceptionType : exceptionTypes) { joiner.add(exceptionType.getTypeName()); } sb.append(joiner.toString()); } return sb.toString(); } catch (Exception e) { return "<" + e + ">"; } }
Generate toGenericString header information specific to a method or constructor.
/** * Generate toGenericString header information specific to a * method or constructor. */
abstract void specificToGenericStringHeader(StringBuilder sb);
Returns the Class object representing the class or interface that declares the executable represented by this object.
/** * Returns the {@code Class} object representing the class or interface * that declares the executable represented by this object. */
public abstract Class<?> getDeclaringClass();
Returns the name of the executable represented by this object.
/** * Returns the name of the executable represented by this object. */
public abstract String getName();
Returns the Java language modifiers for the executable represented by this object.
/** * Returns the Java language {@linkplain Modifier modifiers} for * the executable represented by this object. */
public abstract int getModifiers();
Returns an array of TypeVariable objects that represent the type variables declared by the generic declaration represented by this GenericDeclaration object, in declaration order. Returns an array of length 0 if the underlying generic declaration declares no type variables.
Throws:
  • GenericSignatureFormatError – if the generic signature of this generic declaration does not conform to the format specified in The Java™ Virtual Machine Specification
Returns:an array of TypeVariable objects that represent the type variables declared by this generic declaration
/** * Returns an array of {@code TypeVariable} objects that represent the * type variables declared by the generic declaration represented by this * {@code GenericDeclaration} object, in declaration order. Returns an * array of length 0 if the underlying generic declaration declares no type * variables. * * @return an array of {@code TypeVariable} objects that represent * the type variables declared by this generic declaration * @throws GenericSignatureFormatError if the generic * signature of this generic declaration does not conform to * the format specified in * <cite>The Java&trade; Virtual Machine Specification</cite> */
public abstract TypeVariable<?>[] getTypeParameters(); // returns shared array of parameter types - must never give it out // to the untrusted code... abstract Class<?>[] getSharedParameterTypes(); // returns shared array of exception types - must never give it out // to the untrusted code... abstract Class<?>[] getSharedExceptionTypes();
Returns an array of Class objects that represent the formal parameter types, in declaration order, of the executable represented by this object. Returns an array of length 0 if the underlying executable takes no parameters.
Returns:the parameter types for the executable this object represents
/** * Returns an array of {@code Class} objects that represent the formal * parameter types, in declaration order, of the executable * represented by this object. Returns an array of length * 0 if the underlying executable takes no parameters. * * @return the parameter types for the executable this object * represents */
public abstract Class<?>[] getParameterTypes();
Returns the number of formal parameters (whether explicitly declared or implicitly declared or neither) for the executable represented by this object.
Returns:The number of formal parameters for the executable this object represents
/** * Returns the number of formal parameters (whether explicitly * declared or implicitly declared or neither) for the executable * represented by this object. * * @return The number of formal parameters for the executable this * object represents */
public int getParameterCount() { throw new AbstractMethodError(); }
Returns an array of Type objects that represent the formal parameter types, in declaration order, of the executable represented by this object. Returns an array of length 0 if the underlying executable takes no parameters.

If a formal parameter type is a parameterized type, the Type object returned for it must accurately reflect the actual type parameters used in the source code.

If a formal parameter type is a type variable or a parameterized type, it is created. Otherwise, it is resolved.

Throws:
  • GenericSignatureFormatError – if the generic method signature does not conform to the format specified in The Java™ Virtual Machine Specification
  • TypeNotPresentException – if any of the parameter types of the underlying executable refers to a non-existent type declaration
  • MalformedParameterizedTypeException – if any of the underlying executable's parameter types refer to a parameterized type that cannot be instantiated for any reason
Returns:an array of Types that represent the formal parameter types of the underlying executable, in declaration order
/** * Returns an array of {@code Type} objects that represent the formal * parameter types, in declaration order, of the executable represented by * this object. Returns an array of length 0 if the * underlying executable takes no parameters. * * <p>If a formal parameter type is a parameterized type, * the {@code Type} object returned for it must accurately reflect * the actual type parameters used in the source code. * * <p>If a formal parameter type is a type variable or a parameterized * type, it is created. Otherwise, it is resolved. * * @return an array of {@code Type}s that represent the formal * parameter types of the underlying executable, in declaration order * @throws GenericSignatureFormatError * if the generic method signature does not conform to the format * specified in * <cite>The Java&trade; Virtual Machine Specification</cite> * @throws TypeNotPresentException if any of the parameter * types of the underlying executable refers to a non-existent type * declaration * @throws MalformedParameterizedTypeException if any of * the underlying executable's parameter types refer to a parameterized * type that cannot be instantiated for any reason */
public Type[] getGenericParameterTypes() { if (hasGenericInformation()) return getGenericInfo().getParameterTypes(); else return getParameterTypes(); }
Behaves like getGenericParameterTypes, but returns type information for all parameters, including synthetic parameters.
/** * Behaves like {@code getGenericParameterTypes}, but returns type * information for all parameters, including synthetic parameters. */
Type[] getAllGenericParameterTypes() { final boolean genericInfo = hasGenericInformation(); // Easy case: we don't have generic parameter information. In // this case, we just return the result of // getParameterTypes(). if (!genericInfo) { return getParameterTypes(); } else { final boolean realParamData = hasRealParameterData(); final Type[] genericParamTypes = getGenericParameterTypes(); final Type[] nonGenericParamTypes = getParameterTypes(); final Type[] out = new Type[nonGenericParamTypes.length]; final Parameter[] params = getParameters(); int fromidx = 0; // If we have real parameter data, then we use the // synthetic and mandate flags to our advantage. if (realParamData) { for (int i = 0; i < out.length; i++) { final Parameter param = params[i]; if (param.isSynthetic() || param.isImplicit()) { // If we hit a synthetic or mandated parameter, // use the non generic parameter info. out[i] = nonGenericParamTypes[i]; } else { // Otherwise, use the generic parameter info. out[i] = genericParamTypes[fromidx]; fromidx++; } } } else { // Otherwise, use the non-generic parameter data. // Without method parameter reflection data, we have // no way to figure out which parameters are // synthetic/mandated, thus, no way to match up the // indexes. return genericParamTypes.length == nonGenericParamTypes.length ? genericParamTypes : nonGenericParamTypes; } return out; } }
Returns an array of Parameter objects that represent all the parameters to the underlying executable represented by this object. Returns an array of length 0 if the executable has no parameters.

The parameters of the underlying executable do not necessarily have unique names, or names that are legal identifiers in the Java programming language (JLS 3.8).

Throws:
Returns:an array of Parameter objects representing all the parameters to the executable this object represents.
/** * Returns an array of {@code Parameter} objects that represent * all the parameters to the underlying executable represented by * this object. Returns an array of length 0 if the executable * has no parameters. * * <p>The parameters of the underlying executable do not necessarily * have unique names, or names that are legal identifiers in the * Java programming language (JLS 3.8). * * @throws MalformedParametersException if the class file contains * a MethodParameters attribute that is improperly formatted. * @return an array of {@code Parameter} objects representing all * the parameters to the executable this object represents. */
public Parameter[] getParameters() { // TODO: This may eventually need to be guarded by security // mechanisms similar to those in Field, Method, etc. // // Need to copy the cached array to prevent users from messing // with it. Since parameters are immutable, we can // shallow-copy. return privateGetParameters().clone(); } private Parameter[] synthesizeAllParams() { final int realparams = getParameterCount(); final Parameter[] out = new Parameter[realparams]; for (int i = 0; i < realparams; i++) // TODO: is there a way to synthetically derive the // modifiers? Probably not in the general case, since // we'd have no way of knowing about them, but there // may be specific cases. out[i] = new Parameter("arg" + i, 0, this, i); return out; } private void verifyParameters(final Parameter[] parameters) { final int mask = Modifier.FINAL | Modifier.SYNTHETIC | Modifier.MANDATED; if (getParameterTypes().length != parameters.length) throw new MalformedParametersException("Wrong number of parameters in MethodParameters attribute"); for (Parameter parameter : parameters) { final String name = parameter.getRealName(); final int mods = parameter.getModifiers(); if (name != null) { if (name.isEmpty() || name.indexOf('.') != -1 || name.indexOf(';') != -1 || name.indexOf('[') != -1 || name.indexOf('/') != -1) { throw new MalformedParametersException("Invalid parameter name \"" + name + "\""); } } if (mods != (mods & mask)) { throw new MalformedParametersException("Invalid parameter modifiers"); } } } private Parameter[] privateGetParameters() { // Use tmp to avoid multiple writes to a volatile. Parameter[] tmp = parameters; if (tmp == null) { // Otherwise, go to the JVM to get them try { tmp = getParameters0(); } catch(IllegalArgumentException e) { // Rethrow ClassFormatErrors throw new MalformedParametersException("Invalid constant pool index"); } // If we get back nothing, then synthesize parameters if (tmp == null) { hasRealParameterData = false; tmp = synthesizeAllParams(); } else { hasRealParameterData = true; verifyParameters(tmp); } parameters = tmp; } return tmp; } boolean hasRealParameterData() { // If this somehow gets called before parameters gets // initialized, force it into existence. if (parameters == null) { privateGetParameters(); } return hasRealParameterData; } private transient volatile boolean hasRealParameterData; private transient volatile Parameter[] parameters; private native Parameter[] getParameters0(); native byte[] getTypeAnnotationBytes0(); // Needed by reflectaccess byte[] getTypeAnnotationBytes() { return getTypeAnnotationBytes0(); }
Returns an array of Class objects that represent the types of exceptions declared to be thrown by the underlying executable represented by this object. Returns an array of length 0 if the executable declares no exceptions in its throws clause.
Returns:the exception types declared as being thrown by the executable this object represents
/** * Returns an array of {@code Class} objects that represent the * types of exceptions declared to be thrown by the underlying * executable represented by this object. Returns an array of * length 0 if the executable declares no exceptions in its {@code * throws} clause. * * @return the exception types declared as being thrown by the * executable this object represents */
public abstract Class<?>[] getExceptionTypes();
Returns an array of Type objects that represent the exceptions declared to be thrown by this executable object. Returns an array of length 0 if the underlying executable declares no exceptions in its throws clause.

If an exception type is a type variable or a parameterized type, it is created. Otherwise, it is resolved.

Throws:
Returns:an array of Types that represent the exception types thrown by the underlying executable
/** * Returns an array of {@code Type} objects that represent the * exceptions declared to be thrown by this executable object. * Returns an array of length 0 if the underlying executable declares * no exceptions in its {@code throws} clause. * * <p>If an exception type is a type variable or a parameterized * type, it is created. Otherwise, it is resolved. * * @return an array of Types that represent the exception types * thrown by the underlying executable * @throws GenericSignatureFormatError * if the generic method signature does not conform to the format * specified in * <cite>The Java&trade; Virtual Machine Specification</cite> * @throws TypeNotPresentException if the underlying executable's * {@code throws} clause refers to a non-existent type declaration * @throws MalformedParameterizedTypeException if * the underlying executable's {@code throws} clause refers to a * parameterized type that cannot be instantiated for any reason */
public Type[] getGenericExceptionTypes() { Type[] result; if (hasGenericInformation() && ((result = getGenericInfo().getExceptionTypes()).length > 0)) return result; else return getExceptionTypes(); }
Returns a string describing this Executable, including any type parameters.
Returns:a string describing this Executable, including any type parameters
/** * Returns a string describing this {@code Executable}, including * any type parameters. * @return a string describing this {@code Executable}, including * any type parameters */
public abstract String toGenericString();
Returns true if this executable was declared to take a variable number of arguments; returns false otherwise.
Returns:true if an only if this executable was declared to take a variable number of arguments.
/** * Returns {@code true} if this executable was declared to take a * variable number of arguments; returns {@code false} otherwise. * * @return {@code true} if an only if this executable was declared * to take a variable number of arguments. */
public boolean isVarArgs() { return (getModifiers() & Modifier.VARARGS) != 0; }
Returns true if this executable is a synthetic construct; returns false otherwise.
Returns:true if and only if this executable is a synthetic construct as defined by The Java™ Language Specification.
@jls13.1 The Form of a Binary
/** * Returns {@code true} if this executable is a synthetic * construct; returns {@code false} otherwise. * * @return true if and only if this executable is a synthetic * construct as defined by * <cite>The Java&trade; Language Specification</cite>. * @jls 13.1 The Form of a Binary */
public boolean isSynthetic() { return Modifier.isSynthetic(getModifiers()); }
Returns an array of arrays of Annotations that represent the annotations on the formal parameters, in declaration order, of the Executable represented by this object. Synthetic and mandated parameters (see explanation below), such as the outer "this" parameter to an inner class constructor will be represented in the returned array. If the executable has no parameters (meaning no formal, no synthetic, and no mandated parameters), a zero-length array will be returned. If the Executable has one or more parameters, a nested array of length zero is returned for each parameter with no annotations. The annotation objects contained in the returned arrays are serializable. The caller of this method is free to modify the returned arrays; it will have no effect on the arrays returned to other callers. A compiler may add extra parameters that are implicitly declared in source ("mandated"), as well as parameters that are neither implicitly nor explicitly declared in source ("synthetic") to the parameter list for a method. See Parameter for more information.
See Also:
Returns:an array of arrays that represent the annotations on the formal and implicit parameters, in declaration order, of the executable represented by this object
/** * Returns an array of arrays of {@code Annotation}s that * represent the annotations on the formal parameters, in * declaration order, of the {@code Executable} represented by * this object. Synthetic and mandated parameters (see * explanation below), such as the outer "this" parameter to an * inner class constructor will be represented in the returned * array. If the executable has no parameters (meaning no formal, * no synthetic, and no mandated parameters), a zero-length array * will be returned. If the {@code Executable} has one or more * parameters, a nested array of length zero is returned for each * parameter with no annotations. The annotation objects contained * in the returned arrays are serializable. The caller of this * method is free to modify the returned arrays; it will have no * effect on the arrays returned to other callers. * * A compiler may add extra parameters that are implicitly * declared in source ("mandated"), as well as parameters that * are neither implicitly nor explicitly declared in source * ("synthetic") to the parameter list for a method. See {@link * java.lang.reflect.Parameter} for more information. * * @see java.lang.reflect.Parameter * @see java.lang.reflect.Parameter#getAnnotations * @return an array of arrays that represent the annotations on * the formal and implicit parameters, in declaration order, of * the executable represented by this object */
public abstract Annotation[][] getParameterAnnotations(); Annotation[][] sharedGetParameterAnnotations(Class<?>[] parameterTypes, byte[] parameterAnnotations) { int numParameters = parameterTypes.length; if (parameterAnnotations == null) return new Annotation[numParameters][0]; Annotation[][] result = parseParameterAnnotations(parameterAnnotations); if (result.length != numParameters && handleParameterNumberMismatch(result.length, numParameters)) { Annotation[][] tmp = new Annotation[result.length+1][]; // Shift annotations down one to account for an implicit leading parameter System.arraycopy(result, 0, tmp, 1, result.length); tmp[0] = new Annotation[0]; result = tmp; } return result; } abstract boolean handleParameterNumberMismatch(int resultLength, int numParameters);
{@inheritDoc}
Throws:
/** * {@inheritDoc} * @throws NullPointerException {@inheritDoc} */
public <T extends Annotation> T getAnnotation(Class<T> annotationClass) { Objects.requireNonNull(annotationClass); return annotationClass.cast(declaredAnnotations().get(annotationClass)); }
{@inheritDoc}
Throws:
/** * {@inheritDoc} * @throws NullPointerException {@inheritDoc} */
@Override public <T extends Annotation> T[] getAnnotationsByType(Class<T> annotationClass) { Objects.requireNonNull(annotationClass); return AnnotationSupport.getDirectlyAndIndirectlyPresent(declaredAnnotations(), annotationClass); }
{@inheritDoc}
/** * {@inheritDoc} */
public Annotation[] getDeclaredAnnotations() { return AnnotationParser.toArray(declaredAnnotations()); } private transient volatile Map<Class<? extends Annotation>, Annotation> declaredAnnotations; private Map<Class<? extends Annotation>, Annotation> declaredAnnotations() { Map<Class<? extends Annotation>, Annotation> declAnnos; if ((declAnnos = declaredAnnotations) == null) { synchronized (this) { if ((declAnnos = declaredAnnotations) == null) { Executable root = (Executable)getRoot(); if (root != null) { declAnnos = root.declaredAnnotations(); } else { declAnnos = AnnotationParser.parseAnnotations( getAnnotationBytes(), SharedSecrets.getJavaLangAccess(). getConstantPool(getDeclaringClass()), getDeclaringClass() ); } declaredAnnotations = declAnnos; } } } return declAnnos; }
Returns an AnnotatedType object that represents the use of a type to specify the return type of the method/constructor represented by this Executable. If this Executable object represents a constructor, the AnnotatedType object represents the type of the constructed object. If this Executable object represents a method, the AnnotatedType object represents the use of a type to specify the return type of the method.
Returns:an object representing the return type of the method or constructor represented by this Executable
/** * Returns an {@code AnnotatedType} object that represents the use of a type to * specify the return type of the method/constructor represented by this * Executable. * * If this {@code Executable} object represents a constructor, the {@code * AnnotatedType} object represents the type of the constructed object. * * If this {@code Executable} object represents a method, the {@code * AnnotatedType} object represents the use of a type to specify the return * type of the method. * * @return an object representing the return type of the method * or constructor represented by this {@code Executable} */
public abstract AnnotatedType getAnnotatedReturnType(); /* Helper for subclasses of Executable. * * Returns an AnnotatedType object that represents the use of a type to * specify the return type of the method/constructor represented by this * Executable. */ AnnotatedType getAnnotatedReturnType0(Type returnType) { return TypeAnnotationParser.buildAnnotatedType(getTypeAnnotationBytes0(), SharedSecrets.getJavaLangAccess(). getConstantPool(getDeclaringClass()), this, getDeclaringClass(), returnType, TypeAnnotation.TypeAnnotationTarget.METHOD_RETURN); }
Returns an AnnotatedType object that represents the use of a type to specify the receiver type of the method/constructor represented by this Executable object. The receiver type of a method/constructor is available only if the method/constructor has a receiver parameter (JLS 8.4.1). If this Executable object represents an instance method or represents a constructor of an inner member class, and the method/constructor either has no receiver parameter or has a receiver parameter with no annotations on its type, then the return value is an AnnotatedType object representing an element with no annotations. If this Executable object represents a static method or represents a constructor of a top level, static member, local, or anonymous class, then the return value is null.
Returns:an object representing the receiver type of the method or constructor represented by this Executable or null if this Executable can not have a receiver parameter
/** * Returns an {@code AnnotatedType} object that represents the use of a * type to specify the receiver type of the method/constructor represented * by this {@code Executable} object. * * The receiver type of a method/constructor is available only if the * method/constructor has a receiver parameter (JLS 8.4.1). If this {@code * Executable} object <em>represents an instance method or represents a * constructor of an inner member class</em>, and the * method/constructor <em>either</em> has no receiver parameter or has a * receiver parameter with no annotations on its type, then the return * value is an {@code AnnotatedType} object representing an element with no * annotations. * * If this {@code Executable} object represents a static method or * represents a constructor of a top level, static member, local, or * anonymous class, then the return value is null. * * @return an object representing the receiver type of the method or * constructor represented by this {@code Executable} or {@code null} if * this {@code Executable} can not have a receiver parameter */
public AnnotatedType getAnnotatedReceiverType() { if (Modifier.isStatic(this.getModifiers())) return null; return TypeAnnotationParser.buildAnnotatedType(getTypeAnnotationBytes0(), SharedSecrets.getJavaLangAccess(). getConstantPool(getDeclaringClass()), this, getDeclaringClass(), getDeclaringClass(), TypeAnnotation.TypeAnnotationTarget.METHOD_RECEIVER); }
Returns an array of AnnotatedType objects that represent the use of types to specify formal parameter types of the method/constructor represented by this Executable. The order of the objects in the array corresponds to the order of the formal parameter types in the declaration of the method/constructor. Returns an array of length 0 if the method/constructor declares no parameters.
Returns:an array of objects representing the types of the formal parameters of the method or constructor represented by this Executable
/** * Returns an array of {@code AnnotatedType} objects that represent the use * of types to specify formal parameter types of the method/constructor * represented by this Executable. The order of the objects in the array * corresponds to the order of the formal parameter types in the * declaration of the method/constructor. * * Returns an array of length 0 if the method/constructor declares no * parameters. * * @return an array of objects representing the types of the * formal parameters of the method or constructor represented by this * {@code Executable} */
public AnnotatedType[] getAnnotatedParameterTypes() { return TypeAnnotationParser.buildAnnotatedTypes(getTypeAnnotationBytes0(), SharedSecrets.getJavaLangAccess(). getConstantPool(getDeclaringClass()), this, getDeclaringClass(), getAllGenericParameterTypes(), TypeAnnotation.TypeAnnotationTarget.METHOD_FORMAL_PARAMETER); }
Returns an array of AnnotatedType objects that represent the use of types to specify the declared exceptions of the method/constructor represented by this Executable. The order of the objects in the array corresponds to the order of the exception types in the declaration of the method/constructor. Returns an array of length 0 if the method/constructor declares no exceptions.
Returns:an array of objects representing the declared exceptions of the method or constructor represented by this Executable
/** * Returns an array of {@code AnnotatedType} objects that represent the use * of types to specify the declared exceptions of the method/constructor * represented by this Executable. The order of the objects in the array * corresponds to the order of the exception types in the declaration of * the method/constructor. * * Returns an array of length 0 if the method/constructor declares no * exceptions. * * @return an array of objects representing the declared * exceptions of the method or constructor represented by this {@code * Executable} */
public AnnotatedType[] getAnnotatedExceptionTypes() { return TypeAnnotationParser.buildAnnotatedTypes(getTypeAnnotationBytes0(), SharedSecrets.getJavaLangAccess(). getConstantPool(getDeclaringClass()), this, getDeclaringClass(), getGenericExceptionTypes(), TypeAnnotation.TypeAnnotationTarget.THROWS); } }