/*
 * Copyright 2013, Google Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

package org.jf.util;

SparseIntArrays map integers to integers. Unlike a normal array of integers, there can be gaps in the indices. It is intended to be more efficient than using a HashMap to map Integers to Integers.
/** * SparseIntArrays map integers to integers. Unlike a normal array of integers, * there can be gaps in the indices. It is intended to be more efficient * than using a HashMap to map Integers to Integers. */
public class SparseIntArray {
Creates a new SparseIntArray containing no mappings.
/** * Creates a new SparseIntArray containing no mappings. */
public SparseIntArray() { this(10); }
Creates a new SparseIntArray containing no mappings that will not require any additional memory allocation to store the specified number of mappings.
/** * Creates a new SparseIntArray containing no mappings that will not * require any additional memory allocation to store the specified * number of mappings. */
public SparseIntArray(int initialCapacity) { mKeys = new int[initialCapacity]; mValues = new int[initialCapacity]; mSize = 0; }
Gets the int mapped from the specified key, or 0 if no such mapping has been made.
/** * Gets the int mapped from the specified key, or <code>0</code> * if no such mapping has been made. */
public int get(int key) { return get(key, 0); }
Gets the int mapped from the specified key, or the specified value if no such mapping has been made.
/** * Gets the int mapped from the specified key, or the specified value * if no such mapping has been made. */
public int get(int key, int valueIfKeyNotFound) { int i = binarySearch(mKeys, 0, mSize, key); if (i < 0) { return valueIfKeyNotFound; } else { return mValues[i]; } }
Gets the int mapped from the specified key, or if not present, the closest key that is less than the specified key.
/** * Gets the int mapped from the specified key, or if not present, the * closest key that is less than the specified key. */
public int getClosestSmaller(int key) { int i = binarySearch(mKeys, 0, mSize, key); if (i < 0) { i = ~i; if (i > 0) { i--; } return mValues[i]; } else { return mValues[i]; } }
Removes the mapping from the specified key, if there was any.
/** * Removes the mapping from the specified key, if there was any. */
public void delete(int key) { int i = binarySearch(mKeys, 0, mSize, key); if (i >= 0) { removeAt(i); } }
Removes the mapping at the given index.
/** * Removes the mapping at the given index. */
public void removeAt(int index) { System.arraycopy(mKeys, index + 1, mKeys, index, mSize - (index + 1)); System.arraycopy(mValues, index + 1, mValues, index, mSize - (index + 1)); mSize--; }
Adds a mapping from the specified key to the specified value, replacing the previous mapping from the specified key if there was one.
/** * Adds a mapping from the specified key to the specified value, * replacing the previous mapping from the specified key if there * was one. */
public void put(int key, int value) { int i = binarySearch(mKeys, 0, mSize, key); if (i >= 0) { mValues[i] = value; } else { i = ~i; if (mSize >= mKeys.length) { int n = Math.max(mSize + 1, mKeys.length * 2); int[] nkeys = new int[n]; int[] nvalues = new int[n]; // Log.e("SparseIntArray", "grow " + mKeys.length + " to " + n); System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length); System.arraycopy(mValues, 0, nvalues, 0, mValues.length); mKeys = nkeys; mValues = nvalues; } if (mSize - i != 0) { // Log.e("SparseIntArray", "move " + (mSize - i)); System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i); System.arraycopy(mValues, i, mValues, i + 1, mSize - i); } mKeys[i] = key; mValues[i] = value; mSize++; } }
Returns the number of key-value mappings that this SparseIntArray currently stores.
/** * Returns the number of key-value mappings that this SparseIntArray * currently stores. */
public int size() { return mSize; }
Given an index in the range 0...size()-1, returns the key from the indexth key-value mapping that this SparseIntArray stores.
/** * Given an index in the range <code>0...size()-1</code>, returns * the key from the <code>index</code>th key-value mapping that this * SparseIntArray stores. */
public int keyAt(int index) { return mKeys[index]; }
Given an index in the range 0...size()-1, returns the value from the indexth key-value mapping that this SparseIntArray stores.
/** * Given an index in the range <code>0...size()-1</code>, returns * the value from the <code>index</code>th key-value mapping that this * SparseIntArray stores. */
public int valueAt(int index) { return mValues[index]; }
Returns the index for which keyAt would return the specified key, or a negative number if the specified key is not mapped.
/** * Returns the index for which {@link #keyAt} would return the * specified key, or a negative number if the specified * key is not mapped. */
public int indexOfKey(int key) { return binarySearch(mKeys, 0, mSize, key); }
Returns an index for which valueAt would return the specified key, or a negative number if no keys map to the specified value. Beware that this is a linear search, unlike lookups by key, and that multiple keys can map to the same value and this will find only one of them.
/** * Returns an index for which {@link #valueAt} would return the * specified key, or a negative number if no keys map to the * specified value. * Beware that this is a linear search, unlike lookups by key, * and that multiple keys can map to the same value and this will * find only one of them. */
public int indexOfValue(int value) { for (int i = 0; i < mSize; i++) if (mValues[i] == value) return i; return -1; }
Removes all key-value mappings from this SparseIntArray.
/** * Removes all key-value mappings from this SparseIntArray. */
public void clear() { mSize = 0; }
Puts a key/value pair into the array, optimizing for the case where the key is greater than all existing keys in the array.
/** * Puts a key/value pair into the array, optimizing for the case where * the key is greater than all existing keys in the array. */
public void append(int key, int value) { if (mSize != 0 && key <= mKeys[mSize - 1]) { put(key, value); return; } int pos = mSize; if (pos >= mKeys.length) { int n = Math.max(pos + 1, mKeys.length * 2); int[] nkeys = new int[n]; int[] nvalues = new int[n]; // Log.e("SparseIntArray", "grow " + mKeys.length + " to " + n); System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length); System.arraycopy(mValues, 0, nvalues, 0, mValues.length); mKeys = nkeys; mValues = nvalues; } mKeys[pos] = key; mValues[pos] = value; mSize = pos + 1; } private static int binarySearch(int[] a, int start, int len, int key) { int high = start + len, low = start - 1, guess; while (high - low > 1) { guess = (high + low) / 2; if (a[guess] < key) low = guess; else high = guess; } if (high == start + len) return ~(start + len); else if (a[high] == key) return high; else return ~high; } private int[] mKeys; private int[] mValues; private int mSize; }