/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */
package org.apache.coyote.http2;

import java.nio.ByteBuffer;

import org.apache.tomcat.util.res.StringManager;

A decoder for HPACK.
/** * A decoder for HPACK. */
public class HpackDecoder { protected static final StringManager sm = StringManager.getManager(HpackDecoder.class); private static final int DEFAULT_RING_BUFFER_SIZE = 10;
The object that receives the headers that are emitted from this decoder
/** * The object that receives the headers that are emitted from this decoder */
private HeaderEmitter headerEmitter;
The header table
/** * The header table */
private Hpack.HeaderField[] headerTable;
The current HEAD position of the header table. We use a ring buffer type construct as it would be silly to actually shuffle the items around in the array.
/** * The current HEAD position of the header table. We use a ring buffer type * construct as it would be silly to actually shuffle the items around in the * array. */
private int firstSlotPosition = 0;
The current table size by index (aka the number of index positions that are filled up)
/** * The current table size by index (aka the number of index positions that are filled up) */
private int filledTableSlots = 0;
the current calculates memory size, as per the HPACK algorithm
/** * the current calculates memory size, as per the HPACK algorithm */
private int currentMemorySize = 0;
The maximum allowed memory size set by the container.
/** * The maximum allowed memory size set by the container. */
private int maxMemorySizeHard;
The maximum memory size currently in use. May be less than the hard limit.
/** * The maximum memory size currently in use. May be less than the hard limit. */
private int maxMemorySizeSoft; private int maxHeaderCount = Constants.DEFAULT_MAX_HEADER_COUNT; private int maxHeaderSize = Constants.DEFAULT_MAX_HEADER_SIZE; private volatile int headerCount = 0; private volatile boolean countedCookie; private volatile int headerSize = 0; private final StringBuilder stringBuilder = new StringBuilder(); HpackDecoder(int maxMemorySize) { this.maxMemorySizeHard = maxMemorySize; this.maxMemorySizeSoft = maxMemorySize; headerTable = new Hpack.HeaderField[DEFAULT_RING_BUFFER_SIZE]; } HpackDecoder() { this(Hpack.DEFAULT_TABLE_SIZE); }
Decodes the provided frame data. If this method leaves data in the buffer then this buffer should be compacted so this data is preserved, unless there is no more data in which case this should be considered a protocol error.
Params:
  • buffer – The buffer
Throws:
/** * Decodes the provided frame data. If this method leaves data in the buffer * then this buffer should be compacted so this data is preserved, unless * there is no more data in which case this should be considered a protocol error. * * @param buffer The buffer * * @throws HpackException If the packed data is not valid */
void decode(ByteBuffer buffer) throws HpackException { while (buffer.hasRemaining()) { int originalPos = buffer.position(); byte b = buffer.get(); if ((b & 0b10000000) != 0) { //if the first bit is set it is an indexed header field buffer.position(buffer.position() - 1); //unget the byte int index = Hpack.decodeInteger(buffer, 7); //prefix is 7 if (index == -1) { buffer.position(originalPos); return; } else if(index == 0) { throw new HpackException( sm.getString("hpackdecoder.zeroNotValidHeaderTableIndex")); } handleIndex(index); } else if ((b & 0b01000000) != 0) { //Literal Header Field with Incremental Indexing String headerName = readHeaderName(buffer, 6); if (headerName == null) { buffer.position(originalPos); return; } String headerValue = readHpackString(buffer); if (headerValue == null) { buffer.position(originalPos); return; } emitHeader(headerName, headerValue); addEntryToHeaderTable(new Hpack.HeaderField(headerName, headerValue)); } else if ((b & 0b11110000) == 0) { //Literal Header Field without Indexing String headerName = readHeaderName(buffer, 4); if (headerName == null) { buffer.position(originalPos); return; } String headerValue = readHpackString(buffer); if (headerValue == null) { buffer.position(originalPos); return; } emitHeader(headerName, headerValue); } else if ((b & 0b11110000) == 0b00010000) { //Literal Header Field never indexed String headerName = readHeaderName(buffer, 4); if (headerName == null) { buffer.position(originalPos); return; } String headerValue = readHpackString(buffer); if (headerValue == null) { buffer.position(originalPos); return; } emitHeader(headerName, headerValue); } else if ((b & 0b11100000) == 0b00100000) { //context update max table size change if (!handleMaxMemorySizeChange(buffer, originalPos)) { return; } } else { throw new RuntimeException(sm.getString("hpackdecoder.notImplemented")); } } } private boolean handleMaxMemorySizeChange(ByteBuffer buffer, int originalPos) throws HpackException { if (headerCount != 0) { throw new HpackException(sm.getString("hpackdecoder.tableSizeUpdateNotAtStart")); } buffer.position(buffer.position() - 1); //unget the byte int size = Hpack.decodeInteger(buffer, 5); if (size == -1) { buffer.position(originalPos); return false; } if (size > maxMemorySizeHard) { throw new HpackException(sm.getString("hpackdecoder.maxMemorySizeExceeded", Integer.valueOf(size), Integer.valueOf(maxMemorySizeHard))); } maxMemorySizeSoft = size; if (currentMemorySize > maxMemorySizeSoft) { int newTableSlots = filledTableSlots; int tableLength = headerTable.length; int newSize = currentMemorySize; while (newSize > maxMemorySizeSoft) { int clearIndex = firstSlotPosition; firstSlotPosition++; if (firstSlotPosition == tableLength) { firstSlotPosition = 0; } Hpack.HeaderField oldData = headerTable[clearIndex]; headerTable[clearIndex] = null; newSize -= oldData.size; newTableSlots--; } this.filledTableSlots = newTableSlots; currentMemorySize = newSize; } return true; } private String readHeaderName(ByteBuffer buffer, int prefixLength) throws HpackException { buffer.position(buffer.position() - 1); //unget the byte int index = Hpack.decodeInteger(buffer, prefixLength); if (index == -1) { return null; } else if (index != 0) { return handleIndexedHeaderName(index); } else { return readHpackString(buffer); } } private String readHpackString(ByteBuffer buffer) throws HpackException { if (!buffer.hasRemaining()) { return null; } byte data = buffer.get(buffer.position()); int length = Hpack.decodeInteger(buffer, 7); if (buffer.remaining() < length) { return null; } boolean huffman = (data & 0b10000000) != 0; if (huffman) { return readHuffmanString(length, buffer); } for (int i = 0; i < length; ++i) { stringBuilder.append((char) buffer.get()); } String ret = stringBuilder.toString(); stringBuilder.setLength(0); return ret; } private String readHuffmanString(int length, ByteBuffer buffer) throws HpackException { HPackHuffman.decode(buffer, length, stringBuilder); String ret = stringBuilder.toString(); stringBuilder.setLength(0); return ret; } private String handleIndexedHeaderName(int index) throws HpackException { if (index <= Hpack.STATIC_TABLE_LENGTH) { return Hpack.STATIC_TABLE[index].name; } else { // index is 1 based if (index > Hpack.STATIC_TABLE_LENGTH + filledTableSlots) { throw new HpackException(sm.getString("hpackdecoder.headerTableIndexInvalid", Integer.valueOf(index), Integer.valueOf(Hpack.STATIC_TABLE_LENGTH), Integer.valueOf(filledTableSlots))); } int adjustedIndex = getRealIndex(index - Hpack.STATIC_TABLE_LENGTH); Hpack.HeaderField res = headerTable[adjustedIndex]; if (res == null) { throw new HpackException(sm.getString("hpackdecoder.nullHeader", Integer.valueOf(index))); } return res.name; } }
Handle an indexed header representation
Params:
  • index – The index
Throws:
/** * Handle an indexed header representation * * @param index The index * @throws HpackException */
private void handleIndex(int index) throws HpackException { if (index <= Hpack.STATIC_TABLE_LENGTH) { addStaticTableEntry(index); } else { int adjustedIndex = getRealIndex(index - Hpack.STATIC_TABLE_LENGTH); Hpack.HeaderField headerField = headerTable[adjustedIndex]; emitHeader(headerField.name, headerField.value); } }
because we use a ring buffer type construct, and don't actually shuffle items in the array, we need to figure out the real index to use.

package private for unit tests
Params:
  • index – The index from the hpack
Returns:the real index into the array
/** * because we use a ring buffer type construct, and don't actually shuffle * items in the array, we need to figure out the real index to use. * <p/> * package private for unit tests * * @param index The index from the hpack * @return the real index into the array */
int getRealIndex(int index) throws HpackException { //the index is one based, but our table is zero based, hence -1 //also because of our ring buffer setup the indexes are reversed //index = 1 is at position firstSlotPosition + filledSlots int realIndex = (firstSlotPosition + (filledTableSlots - index)) % headerTable.length; if (realIndex < 0) { throw new HpackException(sm.getString("hpackdecoder.headerTableIndexInvalid", Integer.valueOf(index), Integer.valueOf(Hpack.STATIC_TABLE_LENGTH), Integer.valueOf(filledTableSlots))); } return realIndex; } private void addStaticTableEntry(int index) throws HpackException { //adds an entry from the static table. Hpack.HeaderField entry = Hpack.STATIC_TABLE[index]; emitHeader(entry.name, (entry.value == null) ? "" : entry.value); } private void addEntryToHeaderTable(Hpack.HeaderField entry) { if (entry.size > maxMemorySizeSoft) { //it is to big to fit, so we just completely clear the table. while (filledTableSlots > 0) { headerTable[firstSlotPosition] = null; firstSlotPosition++; if (firstSlotPosition == headerTable.length) { firstSlotPosition = 0; } filledTableSlots--; } currentMemorySize = 0; return; } resizeIfRequired(); int newTableSlots = filledTableSlots + 1; int tableLength = headerTable.length; int index = (firstSlotPosition + filledTableSlots) % tableLength; headerTable[index] = entry; int newSize = currentMemorySize + entry.size; while (newSize > maxMemorySizeSoft) { int clearIndex = firstSlotPosition; firstSlotPosition++; if (firstSlotPosition == tableLength) { firstSlotPosition = 0; } Hpack.HeaderField oldData = headerTable[clearIndex]; headerTable[clearIndex] = null; newSize -= oldData.size; newTableSlots--; } this.filledTableSlots = newTableSlots; currentMemorySize = newSize; } private void resizeIfRequired() { if(filledTableSlots == headerTable.length) { Hpack.HeaderField[] newArray = new Hpack.HeaderField[headerTable.length + 10]; //we only grow slowly for(int i = 0; i < headerTable.length; ++i) { newArray[i] = headerTable[(firstSlotPosition + i) % headerTable.length]; } firstSlotPosition = 0; headerTable = newArray; } }
Interface implemented by the intended recipient of the headers.
/** * Interface implemented by the intended recipient of the headers. */
interface HeaderEmitter {
Pass a single header to the recipient.
Params:
  • name – Header name
  • value – Header value
Throws:
  • HpackException – If a header is received that is not compliant with the HTTP/2 specification
/** * Pass a single header to the recipient. * * @param name Header name * @param value Header value * @throws HpackException If a header is received that is not compliant * with the HTTP/2 specification */
void emitHeader(String name, String value) throws HpackException;
Inform the recipient of the headers that a stream error needs to be triggered using the given message when validateHeaders() is called. This is used when the Parser becomes aware of an error that is not visible to the recipient.
Params:
  • streamException – The exception to use when resetting the stream
/** * Inform the recipient of the headers that a stream error needs to be * triggered using the given message when {@link #validateHeaders()} is * called. This is used when the Parser becomes aware of an error that * is not visible to the recipient. * * @param streamException The exception to use when resetting the stream */
void setHeaderException(StreamException streamException);
Are the headers pass to the recipient so far valid? The decoder needs to process all the headers to maintain state even if there is a problem. In addition, it is easy for the the intended recipient to track if the complete set of headers is valid since to do that state needs to be maintained between the parsing of the initial headers and the parsing of any trailer headers. The recipient is the best place to maintain that state.
Throws:
  • StreamException – If the headers received to date are not valid
/** * Are the headers pass to the recipient so far valid? The decoder needs * to process all the headers to maintain state even if there is a * problem. In addition, it is easy for the the intended recipient to * track if the complete set of headers is valid since to do that state * needs to be maintained between the parsing of the initial headers and * the parsing of any trailer headers. The recipient is the best place * to maintain that state. * * @throws StreamException If the headers received to date are not valid */
void validateHeaders() throws StreamException; } HeaderEmitter getHeaderEmitter() { return headerEmitter; } void setHeaderEmitter(HeaderEmitter headerEmitter) { this.headerEmitter = headerEmitter; // Reset limit tracking headerCount = 0; countedCookie = false; headerSize = 0; } void setMaxHeaderCount(int maxHeaderCount) { this.maxHeaderCount = maxHeaderCount; } void setMaxHeaderSize(int maxHeaderSize) { this.maxHeaderSize = maxHeaderSize; } private void emitHeader(String name, String value) throws HpackException { // Header names are forced to lower case if ("cookie".equals(name)) { // Only count the cookie header once since HTTP/2 splits it into // multiple headers to aid compression if (!countedCookie) { headerCount ++; countedCookie = true; } } else { headerCount ++; } // Overhead will vary. The main concern is that lots of small headers // trigger the limiting mechanism correctly. Therefore, use an overhead // estimate of 3 which is the worst case for small headers. int inc = 3 + name.length() + value.length(); headerSize += inc; if (!isHeaderCountExceeded() && !isHeaderSizeExceeded(0)) { headerEmitter.emitHeader(name, value); } } boolean isHeaderCountExceeded() { if (maxHeaderCount < 0) { return false; } return headerCount > maxHeaderCount; } boolean isHeaderSizeExceeded(int unreadSize) { if (maxHeaderSize < 0) { return false; } return (headerSize + unreadSize) > maxHeaderSize; } boolean isHeaderSwallowSizeExceeded(int unreadSize) { if (maxHeaderSize < 0) { return false; } // Swallow the same again before closing the connection. return (headerSize + unreadSize) > (2 * maxHeaderSize); } //package private fields for unit tests int getFirstSlotPosition() { return firstSlotPosition; } Hpack.HeaderField[] getHeaderTable() { return headerTable; } int getFilledTableSlots() { return filledTableSlots; } int getCurrentMemorySize() { return currentMemorySize; } int getMaxMemorySizeSoft() { return maxMemorySizeSoft; } }