/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.collections4.bidimap;

import static org.apache.commons.collections4.bidimap.TreeBidiMap.DataElement.KEY;
import static org.apache.commons.collections4.bidimap.TreeBidiMap.DataElement.VALUE;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.AbstractSet;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

import org.apache.commons.collections4.KeyValue;
import org.apache.commons.collections4.MapIterator;
import org.apache.commons.collections4.OrderedBidiMap;
import org.apache.commons.collections4.OrderedIterator;
import org.apache.commons.collections4.OrderedMapIterator;
import org.apache.commons.collections4.iterators.EmptyOrderedMapIterator;
import org.apache.commons.collections4.keyvalue.UnmodifiableMapEntry;

Red-Black tree-based implementation of BidiMap where all objects added implement the Comparable interface.

This class guarantees that the map will be in both ascending key order and ascending value order, sorted according to the natural order for the key's and value's classes.

This Map is intended for applications that need to be able to look up a key-value pairing by either key or value, and need to do so with equal efficiency.

While that goal could be accomplished by taking a pair of TreeMaps and redirecting requests to the appropriate TreeMap (e.g., containsKey would be directed to the TreeMap that maps values to keys, containsValue would be directed to the TreeMap that maps keys to values), there are problems with that implementation. If the data contained in the TreeMaps is large, the cost of redundant storage becomes significant. The DualTreeBidiMap and DualHashBidiMap implementations use this approach.

This solution keeps minimizes the data storage by holding data only once. The red-black algorithm is based on TreeMap, but has been modified to simultaneously map a tree node by key and by value. This doubles the cost of put operations (but so does using two TreeMaps), and nearly doubles the cost of remove operations (there is a savings in that the lookup of the node to be removed only has to be performed once). And since only one node contains the key and value, storage is significantly less than that required by two TreeMaps.

The Map.Entry instances returned by the appropriate methods will not allow setValue() and will throw an UnsupportedOperationException on attempts to call that method.

Type parameters:
  • <K> – the type of the keys in this map
  • <V> – the type of the values in this map
Since:3.0 (previously DoubleOrderedMap v2.0)
/** * Red-Black tree-based implementation of BidiMap where all objects added * implement the <code>Comparable</code> interface. * <p> * This class guarantees that the map will be in both ascending key order * and ascending value order, sorted according to the natural order for * the key's and value's classes. * <p> * This Map is intended for applications that need to be able to look * up a key-value pairing by either key or value, and need to do so * with equal efficiency. * <p> * While that goal could be accomplished by taking a pair of TreeMaps * and redirecting requests to the appropriate TreeMap (e.g., * containsKey would be directed to the TreeMap that maps values to * keys, containsValue would be directed to the TreeMap that maps keys * to values), there are problems with that implementation. * If the data contained in the TreeMaps is large, the cost of redundant * storage becomes significant. The {@link DualTreeBidiMap} and * {@link DualHashBidiMap} implementations use this approach. * <p> * This solution keeps minimizes the data storage by holding data only once. * The red-black algorithm is based on {@link java.util.TreeMap}, but has been modified * to simultaneously map a tree node by key and by value. This doubles the * cost of put operations (but so does using two TreeMaps), and nearly doubles * the cost of remove operations (there is a savings in that the lookup of the * node to be removed only has to be performed once). And since only one node * contains the key and value, storage is significantly less than that * required by two TreeMaps. * <p> * The Map.Entry instances returned by the appropriate methods will * not allow setValue() and will throw an * UnsupportedOperationException on attempts to call that method. * * @param <K> the type of the keys in this map * @param <V> the type of the values in this map * * @since 3.0 (previously DoubleOrderedMap v2.0) */
public class TreeBidiMap<K extends Comparable<K>, V extends Comparable<V>> implements OrderedBidiMap<K, V>, Serializable { enum DataElement { KEY("key"), VALUE("value"); private final String description;
Create a new TreeBidiMap.DataElement.
Params:
  • description – the description for the element
/** * Create a new TreeBidiMap.DataElement. * * @param description the description for the element */
private DataElement(final String description) { this.description = description; } @Override public String toString() { return description; } } private static final long serialVersionUID = 721969328361807L; private transient Node<K, V>[] rootNode; private transient int nodeCount = 0; private transient int modifications = 0; private transient Set<K> keySet; private transient Set<V> valuesSet; private transient Set<Map.Entry<K, V>> entrySet; private transient Inverse inverse = null; //-----------------------------------------------------------------------
Constructs a new empty TreeBidiMap.
/** * Constructs a new empty TreeBidiMap. */
@SuppressWarnings("unchecked") public TreeBidiMap() { super(); rootNode = new Node[2]; }
Constructs a new TreeBidiMap by copying an existing Map.
Params:
  • map – the map to copy
Throws:
/** * Constructs a new TreeBidiMap by copying an existing Map. * * @param map the map to copy * @throws ClassCastException if the keys/values in the map are * not Comparable or are not mutually comparable * @throws NullPointerException if any key or value in the map is null */
public TreeBidiMap(final Map<? extends K, ? extends V> map) { this(); putAll(map); } //-----------------------------------------------------------------------
Returns the number of key-value mappings in this map.
Returns:the number of key-value mappings in this map
/** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map */
@Override public int size() { return nodeCount; }
Checks whether the map is empty or not.
Returns:true if the map is empty
/** * Checks whether the map is empty or not. * * @return true if the map is empty */
@Override public boolean isEmpty() { return nodeCount == 0; }
Checks whether this map contains the a mapping for the specified key.

The key must implement Comparable.

Params:
  • key – key whose presence in this map is to be tested
Throws:
Returns:true if this map contains a mapping for the specified key
/** * Checks whether this map contains the a mapping for the specified key. * <p> * The key must implement <code>Comparable</code>. * * @param key key whose presence in this map is to be tested * @return true if this map contains a mapping for the specified key * @throws ClassCastException if the key is of an inappropriate type * @throws NullPointerException if the key is null */
@Override public boolean containsKey(final Object key) { checkKey(key); return lookupKey(key) != null; }
Checks whether this map contains the a mapping for the specified value.

The value must implement Comparable.

Params:
  • value – value whose presence in this map is to be tested
Throws:
Returns:true if this map contains a mapping for the specified value
/** * Checks whether this map contains the a mapping for the specified value. * <p> * The value must implement <code>Comparable</code>. * * @param value value whose presence in this map is to be tested * @return true if this map contains a mapping for the specified value * @throws ClassCastException if the value is of an inappropriate type * @throws NullPointerException if the value is null */
@Override public boolean containsValue(final Object value) { checkValue(value); return lookupValue(value) != null; }
Gets the value to which this map maps the specified key. Returns null if the map contains no mapping for this key.

The key must implement Comparable.

Params:
  • key – key whose associated value is to be returned
Throws:
Returns:the value to which this map maps the specified key, or null if the map contains no mapping for this key
/** * Gets the value to which this map maps the specified key. * Returns null if the map contains no mapping for this key. * <p> * The key must implement <code>Comparable</code>. * * @param key key whose associated value is to be returned * @return the value to which this map maps the specified key, * or null if the map contains no mapping for this key * @throws ClassCastException if the key is of an inappropriate type * @throws NullPointerException if the key is null */
@Override public V get(final Object key) { checkKey(key); final Node<K, V> node = lookupKey(key); return node == null ? null : node.getValue(); }
Puts the key-value pair into the map, replacing any previous pair.

When adding a key-value pair, the value may already exist in the map against a different key. That mapping is removed, to ensure that the value only occurs once in the inverse map.

 BidiMap map1 = new TreeBidiMap();
 map.put("A","B");  // contains A mapped to B, as per Map
 map.put("A","C");  // contains A mapped to C, as per Map
 BidiMap map2 = new TreeBidiMap();
 map.put("A","B");  // contains A mapped to B, as per Map
 map.put("C","B");  // contains C mapped to B, key A is removed

Both key and value must implement Comparable.

Params:
  • key – key with which the specified value is to be associated
  • value – value to be associated with the specified key
Throws:
Returns:the previous value for the key
/** * Puts the key-value pair into the map, replacing any previous pair. * <p> * When adding a key-value pair, the value may already exist in the map * against a different key. That mapping is removed, to ensure that the * value only occurs once in the inverse map. * <pre> * BidiMap map1 = new TreeBidiMap(); * map.put("A","B"); // contains A mapped to B, as per Map * map.put("A","C"); // contains A mapped to C, as per Map * * BidiMap map2 = new TreeBidiMap(); * map.put("A","B"); // contains A mapped to B, as per Map * map.put("C","B"); // contains C mapped to B, key A is removed * </pre> * <p> * Both key and value must implement <code>Comparable</code>. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value for the key * @throws ClassCastException if the key is of an inappropriate type * @throws NullPointerException if the key is null */
@Override public V put(final K key, final V value) { final V result = get(key); doPut(key, value); return result; }
Puts all the mappings from the specified map into this map.

All keys and values must implement Comparable.

Params:
  • map – the map to copy from
/** * Puts all the mappings from the specified map into this map. * <p> * All keys and values must implement <code>Comparable</code>. * * @param map the map to copy from */
@Override public void putAll(final Map<? extends K, ? extends V> map) { for (final Map.Entry<? extends K, ? extends V> e : map.entrySet()) { put(e.getKey(), e.getValue()); } }
Removes the mapping for this key from this map if present.

The key must implement Comparable.

Params:
  • key – key whose mapping is to be removed from the map.
Throws:
Returns:previous value associated with specified key, or null if there was no mapping for key.
/** * Removes the mapping for this key from this map if present. * <p> * The key must implement <code>Comparable</code>. * * @param key key whose mapping is to be removed from the map. * @return previous value associated with specified key, * or null if there was no mapping for key. * @throws ClassCastException if the key is of an inappropriate type * @throws NullPointerException if the key is null */
@Override public V remove(final Object key) { return doRemoveKey(key); }
Removes all mappings from this map.
/** * Removes all mappings from this map. */
@Override public void clear() { modify(); nodeCount = 0; rootNode[KEY.ordinal()] = null; rootNode[VALUE.ordinal()] = null; } //-----------------------------------------------------------------------
Returns the key to which this map maps the specified value. Returns null if the map contains no mapping for this value.

The value must implement Comparable.

Params:
  • value – value whose associated key is to be returned.
Throws:
Returns:the key to which this map maps the specified value, or null if the map contains no mapping for this value.
/** * Returns the key to which this map maps the specified value. * Returns null if the map contains no mapping for this value. * <p> * The value must implement <code>Comparable</code>. * * @param value value whose associated key is to be returned. * @return the key to which this map maps the specified value, * or null if the map contains no mapping for this value. * @throws ClassCastException if the value is of an inappropriate type * @throws NullPointerException if the value is null */
@Override public K getKey(final Object value) { checkValue(value); final Node<K, V> node = lookupValue(value); return node == null ? null : node.getKey(); }
Removes the mapping for this value from this map if present.

The value must implement Comparable.

Params:
  • value – value whose mapping is to be removed from the map
Throws:
Returns:previous key associated with specified value, or null if there was no mapping for value.
/** * Removes the mapping for this value from this map if present. * <p> * The value must implement <code>Comparable</code>. * * @param value value whose mapping is to be removed from the map * @return previous key associated with specified value, * or null if there was no mapping for value. * @throws ClassCastException if the value is of an inappropriate type * @throws NullPointerException if the value is null */
@Override public K removeValue(final Object value) { return doRemoveValue(value); } //-----------------------------------------------------------------------
Gets the first (lowest) key currently in this map.
Throws:
Returns:the first (lowest) key currently in this sorted map
/** * Gets the first (lowest) key currently in this map. * * @return the first (lowest) key currently in this sorted map * @throws NoSuchElementException if this map is empty */
@Override public K firstKey() { if (nodeCount == 0) { throw new NoSuchElementException("Map is empty"); } return leastNode(rootNode[KEY.ordinal()], KEY).getKey(); }
Gets the last (highest) key currently in this map.
Throws:
Returns:the last (highest) key currently in this sorted map
/** * Gets the last (highest) key currently in this map. * * @return the last (highest) key currently in this sorted map * @throws NoSuchElementException if this map is empty */
@Override public K lastKey() { if (nodeCount == 0) { throw new NoSuchElementException("Map is empty"); } return greatestNode(rootNode[KEY.ordinal()], KEY).getKey(); }
Gets the next key after the one specified.

The key must implement Comparable.

Params:
  • key – the key to search for next from
Returns:the next key, null if no match or at end
/** * Gets the next key after the one specified. * <p> * The key must implement <code>Comparable</code>. * * @param key the key to search for next from * @return the next key, null if no match or at end */
@Override public K nextKey(final K key) { checkKey(key); final Node<K, V> node = nextGreater(lookupKey(key), KEY); return node == null ? null : node.getKey(); }
Gets the previous key before the one specified.

The key must implement Comparable.

Params:
  • key – the key to search for previous from
Returns:the previous key, null if no match or at start
/** * Gets the previous key before the one specified. * <p> * The key must implement <code>Comparable</code>. * * @param key the key to search for previous from * @return the previous key, null if no match or at start */
@Override public K previousKey(final K key) { checkKey(key); final Node<K, V> node = nextSmaller(lookupKey(key), KEY); return node == null ? null : node.getKey(); } //-----------------------------------------------------------------------
Returns a set view of the keys contained in this map in key order.

The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress, the results of the iteration are undefined.

The set supports element removal, which removes the corresponding mapping from the map. It does not support the add or addAll operations.

Returns:a set view of the keys contained in this map.
/** * Returns a set view of the keys contained in this map in key order. * <p> * The set is backed by the map, so changes to the map are reflected in * the set, and vice-versa. If the map is modified while an iteration over * the set is in progress, the results of the iteration are undefined. * <p> * The set supports element removal, which removes the corresponding mapping * from the map. It does not support the add or addAll operations. * * @return a set view of the keys contained in this map. */
@Override public Set<K> keySet() { if (keySet == null) { keySet = new KeyView(KEY); } return keySet; } //-----------------------------------------------------------------------
Returns a set view of the values contained in this map in key order. The returned object can be cast to a Set.

The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress, the results of the iteration are undefined.

The set supports element removal, which removes the corresponding mapping from the map. It does not support the add or addAll operations.

Returns:a set view of the values contained in this map.
/** * Returns a set view of the values contained in this map in key order. * The returned object can be cast to a Set. * <p> * The set is backed by the map, so changes to the map are reflected in * the set, and vice-versa. If the map is modified while an iteration over * the set is in progress, the results of the iteration are undefined. * <p> * The set supports element removal, which removes the corresponding mapping * from the map. It does not support the add or addAll operations. * * @return a set view of the values contained in this map. */
@Override public Set<V> values() { if (valuesSet == null) { valuesSet = new ValueView(KEY); } return valuesSet; } //-----------------------------------------------------------------------
Returns a set view of the entries contained in this map in key order. For simple iteration through the map, the MapIterator is quicker.

The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress, the results of the iteration are undefined.

The set supports element removal, which removes the corresponding mapping from the map. It does not support the add or addAll operations. The returned MapEntry objects do not support setValue.

Returns:a set view of the values contained in this map.
/** * Returns a set view of the entries contained in this map in key order. * For simple iteration through the map, the MapIterator is quicker. * <p> * The set is backed by the map, so changes to the map are reflected in * the set, and vice-versa. If the map is modified while an iteration over * the set is in progress, the results of the iteration are undefined. * <p> * The set supports element removal, which removes the corresponding mapping * from the map. It does not support the add or addAll operations. * The returned MapEntry objects do not support setValue. * * @return a set view of the values contained in this map. */
@Override public Set<Map.Entry<K, V>> entrySet() { if (entrySet == null) { entrySet = new EntryView(); } return entrySet; } //----------------------------------------------------------------------- @Override public OrderedMapIterator<K, V> mapIterator() { if (isEmpty()) { return EmptyOrderedMapIterator.<K, V>emptyOrderedMapIterator(); } return new ViewMapIterator(KEY); } //-----------------------------------------------------------------------
Gets the inverse map for comparison.
Returns:the inverse map
/** * Gets the inverse map for comparison. * * @return the inverse map */
@Override public OrderedBidiMap<V, K> inverseBidiMap() { if (inverse == null) { inverse = new Inverse(); } return inverse; } //-----------------------------------------------------------------------
Compares for equals as per the API.
Params:
  • obj – the object to compare to
Returns:true if equal
/** * Compares for equals as per the API. * * @param obj the object to compare to * @return true if equal */
@Override public boolean equals(final Object obj) { return this.doEquals(obj, KEY); }
Gets the hash code value for this map as per the API.
Returns:the hash code value for this map
/** * Gets the hash code value for this map as per the API. * * @return the hash code value for this map */
@Override public int hashCode() { return this.doHashCode(KEY); }
Returns a string version of this Map in standard format.
Returns:a standard format string version of the map
/** * Returns a string version of this Map in standard format. * * @return a standard format string version of the map */
@Override public String toString() { return this.doToString(KEY); } //-----------------------------------------------------------------------
Put logic.
Params:
  • key – the key, always the main map key
  • value – the value, always the main map value
/** * Put logic. * * @param key the key, always the main map key * @param value the value, always the main map value */
private void doPut(final K key, final V value) { checkKeyAndValue(key, value); // store previous and remove previous mappings doRemoveKey(key); doRemoveValue(value); Node<K, V> node = rootNode[KEY.ordinal()]; if (node == null) { // map is empty final Node<K, V> root = new Node<>(key, value); rootNode[KEY.ordinal()] = root; rootNode[VALUE.ordinal()] = root; grow(); } else { // add new mapping while (true) { final int cmp = compare(key, node.getKey()); if (cmp == 0) { // shouldn't happen throw new IllegalArgumentException("Cannot store a duplicate key (\"" + key + "\") in this Map"); } else if (cmp < 0) { if (node.getLeft(KEY) != null) { node = node.getLeft(KEY); } else { final Node<K, V> newNode = new Node<>(key, value); insertValue(newNode); node.setLeft(newNode, KEY); newNode.setParent(node, KEY); doRedBlackInsert(newNode, KEY); grow(); break; } } else { // cmp > 0 if (node.getRight(KEY) != null) { node = node.getRight(KEY); } else { final Node<K, V> newNode = new Node<>(key, value); insertValue(newNode); node.setRight(newNode, KEY); newNode.setParent(node, KEY); doRedBlackInsert(newNode, KEY); grow(); break; } } } } } private V doRemoveKey(final Object key) { final Node<K, V> node = lookupKey(key); if (node == null) { return null; } doRedBlackDelete(node); return node.getValue(); } private K doRemoveValue(final Object value) { final Node<K, V> node = lookupValue(value); if (node == null) { return null; } doRedBlackDelete(node); return node.getKey(); }
do the actual lookup of a piece of data
Params:
Returns:the desired Node, or null if there is no mapping of the specified data
/** * do the actual lookup of a piece of data * * @param data the key or value to be looked up * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return the desired Node, or null if there is no mapping of the * specified data */
@SuppressWarnings("unchecked") private <T extends Comparable<T>> Node<K, V> lookup(final Object data, final DataElement dataElement) { Node<K, V> rval = null; Node<K, V> node = rootNode[dataElement.ordinal()]; while (node != null) { final int cmp = compare((T) data, (T) node.getData(dataElement)); if (cmp == 0) { rval = node; break; } node = cmp < 0 ? node.getLeft(dataElement) : node.getRight(dataElement); } return rval; } private Node<K, V> lookupKey(final Object key) { return this.<K>lookup(key, KEY); } private Node<K, V> lookupValue(final Object value) { return this.<V>lookup(value, VALUE); }
get the next larger node from the specified node
Params:
Returns:the specified node
/** * get the next larger node from the specified node * * @param node the node to be searched from * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return the specified node */
private Node<K, V> nextGreater(final Node<K, V> node, final DataElement dataElement) { Node<K, V> rval; if (node == null) { rval = null; } else if (node.getRight(dataElement) != null) { // everything to the node's right is larger. The least of // the right node's descendants is the next larger node rval = leastNode(node.getRight(dataElement), dataElement); } else { // traverse up our ancestry until we find an ancestor that // is null or one whose left child is our ancestor. If we // find a null, then this node IS the largest node in the // tree, and there is no greater node. Otherwise, we are // the largest node in the subtree on that ancestor's left // ... and that ancestor is the next greatest node Node<K, V> parent = node.getParent(dataElement); Node<K, V> child = node; while (parent != null && child == parent.getRight(dataElement)) { child = parent; parent = parent.getParent(dataElement); } rval = parent; } return rval; }
get the next larger node from the specified node
Params:
Returns:the specified node
/** * get the next larger node from the specified node * * @param node the node to be searched from * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return the specified node */
private Node<K, V> nextSmaller(final Node<K, V> node, final DataElement dataElement) { Node<K, V> rval; if (node == null) { rval = null; } else if (node.getLeft(dataElement) != null) { // everything to the node's left is smaller. The greatest of // the left node's descendants is the next smaller node rval = greatestNode(node.getLeft(dataElement), dataElement); } else { // traverse up our ancestry until we find an ancestor that // is null or one whose right child is our ancestor. If we // find a null, then this node IS the largest node in the // tree, and there is no greater node. Otherwise, we are // the largest node in the subtree on that ancestor's right // ... and that ancestor is the next greatest node Node<K, V> parent = node.getParent(dataElement); Node<K, V> child = node; while (parent != null && child == parent.getLeft(dataElement)) { child = parent; parent = parent.getParent(dataElement); } rval = parent; } return rval; } //-----------------------------------------------------------------------
Compare two objects
Params:
  • o1 – the first object
  • o2 – the second object
Returns:negative value if o1 < o2; 0 if o1 == o2; positive value if o1 > o2
/** * Compare two objects * * @param o1 the first object * @param o2 the second object * * @return negative value if o1 &lt; o2; 0 if o1 == o2; positive * value if o1 &gt; o2 */
private static <T extends Comparable<T>> int compare(final T o1, final T o2) { return o1.compareTo(o2); }
Find the least node from a given node.
Params:
  • node – the node from which we will start searching
  • dataElement – either DataElement.KEY key} or the value.
Returns:the smallest node, from the specified node, in the specified mapping
/** * Find the least node from a given node. * * @param node the node from which we will start searching * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return the smallest node, from the specified node, in the * specified mapping */
private Node<K, V> leastNode(final Node<K, V> node, final DataElement dataElement) { Node<K, V> rval = node; if (rval != null) { while (rval.getLeft(dataElement) != null) { rval = rval.getLeft(dataElement); } } return rval; }
Find the greatest node from a given node.
Params:
  • node – the node from which we will start searching
  • dataElement – either DataElement.KEY key} or the value.
Returns:the greatest node, from the specified node
/** * Find the greatest node from a given node. * * @param node the node from which we will start searching * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return the greatest node, from the specified node */
private Node<K, V> greatestNode(final Node<K, V> node, final DataElement dataElement) { Node<K, V> rval = node; if (rval != null) { while (rval.getRight(dataElement) != null) { rval = rval.getRight(dataElement); } } return rval; }
copy the color from one node to another, dealing with the fact that one or both nodes may, in fact, be null
Params:
  • from – the node whose color we're copying; may be null
  • to – the node whose color we're changing; may be null
  • dataElement – either DataElement.KEY key} or the value.
/** * copy the color from one node to another, dealing with the fact * that one or both nodes may, in fact, be null * * @param from the node whose color we're copying; may be null * @param to the node whose color we're changing; may be null * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private void copyColor(final Node<K, V> from, final Node<K, V> to, final DataElement dataElement) { if (to != null) { if (from == null) { // by default, make it black to.setBlack(dataElement); } else { to.copyColor(from, dataElement); } } }
is the specified node red? if the node does not exist, no, it's black, thank you
Params:
  • node – the node (may be null) in question
  • dataElement – either DataElement.KEY key} or the value.
/** * is the specified node red? if the node does not exist, no, it's * black, thank you * * @param node the node (may be null) in question * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private static boolean isRed(final Node<?, ?> node, final DataElement dataElement) { return node != null && node.isRed(dataElement); }
is the specified black red? if the node does not exist, sure, it's black, thank you
Params:
  • node – the node (may be null) in question
  • dataElement – either DataElement.KEY key} or the value.
/** * is the specified black red? if the node does not exist, sure, * it's black, thank you * * @param node the node (may be null) in question * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private static boolean isBlack(final Node<?, ?> node, final DataElement dataElement) { return node == null || node.isBlack(dataElement); }
force a node (if it exists) red
Params:
  • node – the node (may be null) in question
  • dataElement – either DataElement.KEY key} or the value.
/** * force a node (if it exists) red * * @param node the node (may be null) in question * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private static void makeRed(final Node<?, ?> node, final DataElement dataElement) { if (node != null) { node.setRed(dataElement); } }
force a node (if it exists) black
Params:
  • node – the node (may be null) in question
  • dataElement – either DataElement.KEY key} or the value.
/** * force a node (if it exists) black * * @param node the node (may be null) in question * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private static void makeBlack(final Node<?, ?> node, final DataElement dataElement) { if (node != null) { node.setBlack(dataElement); } }
get a node's grandparent. mind you, the node, its parent, or its grandparent may not exist. no problem
Params:
  • node – the node (may be null) in question
  • dataElement – either DataElement.KEY key} or the value.
/** * get a node's grandparent. mind you, the node, its parent, or * its grandparent may not exist. no problem * * @param node the node (may be null) in question * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private Node<K, V> getGrandParent(final Node<K, V> node, final DataElement dataElement) { return getParent(getParent(node, dataElement), dataElement); }
get a node's parent. mind you, the node, or its parent, may not exist. no problem
Params:
  • node – the node (may be null) in question
  • dataElement – either DataElement.KEY key} or the value.
/** * get a node's parent. mind you, the node, or its parent, may not * exist. no problem * * @param node the node (may be null) in question * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private Node<K, V> getParent(final Node<K, V> node, final DataElement dataElement) { return node == null ? null : node.getParent(dataElement); }
get a node's right child. mind you, the node may not exist. no problem
Params:
  • node – the node (may be null) in question
  • dataElement – either DataElement.KEY key} or the value.
/** * get a node's right child. mind you, the node may not exist. no * problem * * @param node the node (may be null) in question * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private Node<K, V> getRightChild(final Node<K, V> node, final DataElement dataElement) { return node == null ? null : node.getRight(dataElement); }
get a node's left child. mind you, the node may not exist. no problem
Params:
  • node – the node (may be null) in question
  • dataElement – either DataElement.KEY key} or the value.
/** * get a node's left child. mind you, the node may not exist. no * problem * * @param node the node (may be null) in question * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private Node<K, V> getLeftChild(final Node<K, V> node, final DataElement dataElement) { return node == null ? null : node.getLeft(dataElement); }
do a rotate left. standard fare in the world of balanced trees
Params:
/** * do a rotate left. standard fare in the world of balanced trees * * @param node the node to be rotated * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private void rotateLeft(final Node<K, V> node, final DataElement dataElement) { final Node<K, V> rightChild = node.getRight(dataElement); node.setRight(rightChild.getLeft(dataElement), dataElement); if (rightChild.getLeft(dataElement) != null) { rightChild.getLeft(dataElement).setParent(node, dataElement); } rightChild.setParent(node.getParent(dataElement), dataElement); if (node.getParent(dataElement) == null) { // node was the root ... now its right child is the root rootNode[dataElement.ordinal()] = rightChild; } else if (node.getParent(dataElement).getLeft(dataElement) == node) { node.getParent(dataElement).setLeft(rightChild, dataElement); } else { node.getParent(dataElement).setRight(rightChild, dataElement); } rightChild.setLeft(node, dataElement); node.setParent(rightChild, dataElement); }
do a rotate right. standard fare in the world of balanced trees
Params:
/** * do a rotate right. standard fare in the world of balanced trees * * @param node the node to be rotated * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private void rotateRight(final Node<K, V> node, final DataElement dataElement) { final Node<K, V> leftChild = node.getLeft(dataElement); node.setLeft(leftChild.getRight(dataElement), dataElement); if (leftChild.getRight(dataElement) != null) { leftChild.getRight(dataElement).setParent(node, dataElement); } leftChild.setParent(node.getParent(dataElement), dataElement); if (node.getParent(dataElement) == null) { // node was the root ... now its left child is the root rootNode[dataElement.ordinal()] = leftChild; } else if (node.getParent(dataElement).getRight(dataElement) == node) { node.getParent(dataElement).setRight(leftChild, dataElement); } else { node.getParent(dataElement).setLeft(leftChild, dataElement); } leftChild.setRight(node, dataElement); node.setParent(leftChild, dataElement); }
complicated red-black insert stuff. Based on Sun's TreeMap implementation, though it's barely recognizable any more
Params:
  • insertedNode – the node to be inserted
  • dataElement – the KEY or VALUE int
/** * complicated red-black insert stuff. Based on Sun's TreeMap * implementation, though it's barely recognizable any more * * @param insertedNode the node to be inserted * @param dataElement the KEY or VALUE int */
private void doRedBlackInsert(final Node<K, V> insertedNode, final DataElement dataElement) { Node<K, V> currentNode = insertedNode; makeRed(currentNode, dataElement); while (currentNode != null && currentNode != rootNode[dataElement.ordinal()] && isRed(currentNode.getParent(dataElement), dataElement)) { if (currentNode.isLeftChild(dataElement)) { final Node<K, V> y = getRightChild(getGrandParent(currentNode, dataElement), dataElement); if (isRed(y, dataElement)) { makeBlack(getParent(currentNode, dataElement), dataElement); makeBlack(y, dataElement); makeRed(getGrandParent(currentNode, dataElement), dataElement); currentNode = getGrandParent(currentNode, dataElement); } else { //dead code? if (currentNode.isRightChild(dataElement)) { currentNode = getParent(currentNode, dataElement); rotateLeft(currentNode, dataElement); } makeBlack(getParent(currentNode, dataElement), dataElement); makeRed(getGrandParent(currentNode, dataElement), dataElement); if (getGrandParent(currentNode, dataElement) != null) { rotateRight(getGrandParent(currentNode, dataElement), dataElement); } } } else { // just like clause above, except swap left for right final Node<K, V> y = getLeftChild(getGrandParent(currentNode, dataElement), dataElement); if (isRed(y, dataElement)) { makeBlack(getParent(currentNode, dataElement), dataElement); makeBlack(y, dataElement); makeRed(getGrandParent(currentNode, dataElement), dataElement); currentNode = getGrandParent(currentNode, dataElement); } else { //dead code? if (currentNode.isLeftChild(dataElement)) { currentNode = getParent(currentNode, dataElement); rotateRight(currentNode, dataElement); } makeBlack(getParent(currentNode, dataElement), dataElement); makeRed(getGrandParent(currentNode, dataElement), dataElement); if (getGrandParent(currentNode, dataElement) != null) { rotateLeft(getGrandParent(currentNode, dataElement), dataElement); } } } } makeBlack(rootNode[dataElement.ordinal()], dataElement); }
complicated red-black delete stuff. Based on Sun's TreeMap implementation, though it's barely recognizable any more
Params:
  • deletedNode – the node to be deleted
/** * complicated red-black delete stuff. Based on Sun's TreeMap * implementation, though it's barely recognizable any more * * @param deletedNode the node to be deleted */
private void doRedBlackDelete(final Node<K, V> deletedNode) { for (final DataElement dataElement : DataElement.values()) { // if deleted node has both left and children, swap with // the next greater node if (deletedNode.getLeft(dataElement) != null && deletedNode.getRight(dataElement) != null) { swapPosition(nextGreater(deletedNode, dataElement), deletedNode, dataElement); } final Node<K, V> replacement = deletedNode.getLeft(dataElement) != null ? deletedNode.getLeft(dataElement) : deletedNode.getRight(dataElement); if (replacement != null) { replacement.setParent(deletedNode.getParent(dataElement), dataElement); if (deletedNode.getParent(dataElement) == null) { rootNode[dataElement.ordinal()] = replacement; } else if (deletedNode == deletedNode.getParent(dataElement).getLeft(dataElement)) { deletedNode.getParent(dataElement).setLeft(replacement, dataElement); } else { deletedNode.getParent(dataElement).setRight(replacement, dataElement); } deletedNode.setLeft(null, dataElement); deletedNode.setRight(null, dataElement); deletedNode.setParent(null, dataElement); if (isBlack(deletedNode, dataElement)) { doRedBlackDeleteFixup(replacement, dataElement); } } else { // replacement is null if (deletedNode.getParent(dataElement) == null) { // empty tree rootNode[dataElement.ordinal()] = null; } else { // deleted node had no children if (isBlack(deletedNode, dataElement)) { doRedBlackDeleteFixup(deletedNode, dataElement); } if (deletedNode.getParent(dataElement) != null) { if (deletedNode == deletedNode.getParent(dataElement).getLeft(dataElement)) { deletedNode.getParent(dataElement).setLeft(null, dataElement); } else { deletedNode.getParent(dataElement).setRight(null, dataElement); } deletedNode.setParent(null, dataElement); } } } } shrink(); }
complicated red-black delete stuff. Based on Sun's TreeMap implementation, though it's barely recognizable any more. This rebalances the tree (somewhat, as red-black trees are not perfectly balanced -- perfect balancing takes longer)
Params:
  • replacementNode – the node being replaced
  • dataElement – the KEY or VALUE int
/** * complicated red-black delete stuff. Based on Sun's TreeMap * implementation, though it's barely recognizable any more. This * rebalances the tree (somewhat, as red-black trees are not * perfectly balanced -- perfect balancing takes longer) * * @param replacementNode the node being replaced * @param dataElement the KEY or VALUE int */
private void doRedBlackDeleteFixup(final Node<K, V> replacementNode, final DataElement dataElement) { Node<K, V> currentNode = replacementNode; while (currentNode != rootNode[dataElement.ordinal()] && isBlack(currentNode, dataElement)) { if (currentNode.isLeftChild(dataElement)) { Node<K, V> siblingNode = getRightChild(getParent(currentNode, dataElement), dataElement); if (isRed(siblingNode, dataElement)) { makeBlack(siblingNode, dataElement); makeRed(getParent(currentNode, dataElement), dataElement); rotateLeft(getParent(currentNode, dataElement), dataElement); siblingNode = getRightChild(getParent(currentNode, dataElement), dataElement); } if (isBlack(getLeftChild(siblingNode, dataElement), dataElement) && isBlack(getRightChild(siblingNode, dataElement), dataElement)) { makeRed(siblingNode, dataElement); currentNode = getParent(currentNode, dataElement); } else { if (isBlack(getRightChild(siblingNode, dataElement), dataElement)) { makeBlack(getLeftChild(siblingNode, dataElement), dataElement); makeRed(siblingNode, dataElement); rotateRight(siblingNode, dataElement); siblingNode = getRightChild(getParent(currentNode, dataElement), dataElement); } copyColor(getParent(currentNode, dataElement), siblingNode, dataElement); makeBlack(getParent(currentNode, dataElement), dataElement); makeBlack(getRightChild(siblingNode, dataElement), dataElement); rotateLeft(getParent(currentNode, dataElement), dataElement); currentNode = rootNode[dataElement.ordinal()]; } } else { Node<K, V> siblingNode = getLeftChild(getParent(currentNode, dataElement), dataElement); if (isRed(siblingNode, dataElement)) { makeBlack(siblingNode, dataElement); makeRed(getParent(currentNode, dataElement), dataElement); rotateRight(getParent(currentNode, dataElement), dataElement); siblingNode = getLeftChild(getParent(currentNode, dataElement), dataElement); } if (isBlack(getRightChild(siblingNode, dataElement), dataElement) && isBlack(getLeftChild(siblingNode, dataElement), dataElement)) { makeRed(siblingNode, dataElement); currentNode = getParent(currentNode, dataElement); } else { if (isBlack(getLeftChild(siblingNode, dataElement), dataElement)) { makeBlack(getRightChild(siblingNode, dataElement), dataElement); makeRed(siblingNode, dataElement); rotateLeft(siblingNode, dataElement); siblingNode = getLeftChild(getParent(currentNode, dataElement), dataElement); } copyColor(getParent(currentNode, dataElement), siblingNode, dataElement); makeBlack(getParent(currentNode, dataElement), dataElement); makeBlack(getLeftChild(siblingNode, dataElement), dataElement); rotateRight(getParent(currentNode, dataElement), dataElement); currentNode = rootNode[dataElement.ordinal()]; } } } makeBlack(currentNode, dataElement); }
swap two nodes (except for their content), taking care of special cases where one is the other's parent ... hey, it happens.
Params:
  • x – one node
  • y – another node
  • dataElement – the KEY or VALUE int
/** * swap two nodes (except for their content), taking care of * special cases where one is the other's parent ... hey, it * happens. * * @param x one node * @param y another node * @param dataElement the KEY or VALUE int */
private void swapPosition(final Node<K, V> x, final Node<K, V> y, final DataElement dataElement) { // Save initial values. final Node<K, V> xFormerParent = x.getParent(dataElement); final Node<K, V> xFormerLeftChild = x.getLeft(dataElement); final Node<K, V> xFormerRightChild = x.getRight(dataElement); final Node<K, V> yFormerParent = y.getParent(dataElement); final Node<K, V> yFormerLeftChild = y.getLeft(dataElement); final Node<K, V> yFormerRightChild = y.getRight(dataElement); final boolean xWasLeftChild = x.getParent(dataElement) != null && x == x.getParent(dataElement).getLeft(dataElement); final boolean yWasLeftChild = y.getParent(dataElement) != null && y == y.getParent(dataElement).getLeft(dataElement); // Swap, handling special cases of one being the other's parent. if (x == yFormerParent) { // x was y's parent x.setParent(y, dataElement); if (yWasLeftChild) { y.setLeft(x, dataElement); y.setRight(xFormerRightChild, dataElement); } else { y.setRight(x, dataElement); y.setLeft(xFormerLeftChild, dataElement); } } else { x.setParent(yFormerParent, dataElement); if (yFormerParent != null) { if (yWasLeftChild) { yFormerParent.setLeft(x, dataElement); } else { yFormerParent.setRight(x, dataElement); } } y.setLeft(xFormerLeftChild, dataElement); y.setRight(xFormerRightChild, dataElement); } if (y == xFormerParent) { // y was x's parent y.setParent(x, dataElement); if (xWasLeftChild) { x.setLeft(y, dataElement); x.setRight(yFormerRightChild, dataElement); } else { x.setRight(y, dataElement); x.setLeft(yFormerLeftChild, dataElement); } } else { y.setParent(xFormerParent, dataElement); if (xFormerParent != null) { if (xWasLeftChild) { xFormerParent.setLeft(y, dataElement); } else { xFormerParent.setRight(y, dataElement); } } x.setLeft(yFormerLeftChild, dataElement); x.setRight(yFormerRightChild, dataElement); } // Fix children's parent pointers if (x.getLeft(dataElement) != null) { x.getLeft(dataElement).setParent(x, dataElement); } if (x.getRight(dataElement) != null) { x.getRight(dataElement).setParent(x, dataElement); } if (y.getLeft(dataElement) != null) { y.getLeft(dataElement).setParent(y, dataElement); } if (y.getRight(dataElement) != null) { y.getRight(dataElement).setParent(y, dataElement); } x.swapColors(y, dataElement); // Check if root changed if (rootNode[dataElement.ordinal()] == x) { rootNode[dataElement.ordinal()] = y; } else if (rootNode[dataElement.ordinal()] == y) { rootNode[dataElement.ordinal()] = x; } }
check if an object is fit to be proper input ... has to be Comparable and non-null
Params:
Throws:
/** * check if an object is fit to be proper input ... has to be * Comparable and non-null * * @param o the object being checked * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * * @throws NullPointerException if o is null * @throws ClassCastException if o is not Comparable */
private static void checkNonNullComparable(final Object o, final DataElement dataElement) { if (o == null) { throw new NullPointerException(dataElement + " cannot be null"); } if (!(o instanceof Comparable)) { throw new ClassCastException(dataElement + " must be Comparable"); } }
check a key for validity (non-null and implements Comparable)
Params:
  • key – the key to be checked
Throws:
/** * check a key for validity (non-null and implements Comparable) * * @param key the key to be checked * * @throws NullPointerException if key is null * @throws ClassCastException if key is not Comparable */
private static void checkKey(final Object key) { checkNonNullComparable(key, KEY); }
check a value for validity (non-null and implements Comparable)
Params:
  • value – the value to be checked
Throws:
/** * check a value for validity (non-null and implements Comparable) * * @param value the value to be checked * * @throws NullPointerException if value is null * @throws ClassCastException if value is not Comparable */
private static void checkValue(final Object value) { checkNonNullComparable(value, VALUE); }
check a key and a value for validity (non-null and implements Comparable)
Params:
  • key – the key to be checked
  • value – the value to be checked
Throws:
/** * check a key and a value for validity (non-null and implements * Comparable) * * @param key the key to be checked * @param value the value to be checked * * @throws NullPointerException if key or value is null * @throws ClassCastException if key or value is not Comparable */
private static void checkKeyAndValue(final Object key, final Object value) { checkKey(key); checkValue(value); }
increment the modification count -- used to check for concurrent modification of the map through the map and through an Iterator from one of its Set or Collection views
/** * increment the modification count -- used to check for * concurrent modification of the map through the map and through * an Iterator from one of its Set or Collection views */
private void modify() { modifications++; }
bump up the size and note that the map has changed
/** * bump up the size and note that the map has changed */
private void grow() { modify(); nodeCount++; }
decrement the size and note that the map has changed
/** * decrement the size and note that the map has changed */
private void shrink() { modify(); nodeCount--; }
insert a node by its value
Params:
  • newNode – the node to be inserted
Throws:
/** * insert a node by its value * * @param newNode the node to be inserted * * @throws IllegalArgumentException if the node already exists * in the value mapping */
private void insertValue(final Node<K, V> newNode) throws IllegalArgumentException { Node<K, V> node = rootNode[VALUE.ordinal()]; while (true) { final int cmp = compare(newNode.getValue(), node.getValue()); if (cmp == 0) { throw new IllegalArgumentException( "Cannot store a duplicate value (\"" + newNode.getData(VALUE) + "\") in this Map"); } else if (cmp < 0) { if (node.getLeft(VALUE) != null) { node = node.getLeft(VALUE); } else { node.setLeft(newNode, VALUE); newNode.setParent(node, VALUE); doRedBlackInsert(newNode, VALUE); break; } } else { // cmp > 0 if (node.getRight(VALUE) != null) { node = node.getRight(VALUE); } else { node.setRight(newNode, VALUE); newNode.setParent(node, VALUE); doRedBlackInsert(newNode, VALUE); break; } } } } //-----------------------------------------------------------------------
Compares for equals as per the API.
Params:
Returns:true if equal
/** * Compares for equals as per the API. * * @param obj the object to compare to * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return true if equal */
private boolean doEquals(final Object obj, final DataElement dataElement) { if (obj == this) { return true; } if (obj instanceof Map == false) { return false; } final Map<?, ?> other = (Map<?, ?>) obj; if (other.size() != size()) { return false; } if (nodeCount > 0) { try { for (final MapIterator<?, ?> it = getMapIterator(dataElement); it.hasNext(); ) { final Object key = it.next(); final Object value = it.getValue(); if (value.equals(other.get(key)) == false) { return false; } } } catch (final ClassCastException ex) { return false; } catch (final NullPointerException ex) { return false; } } return true; }
Gets the hash code value for this map as per the API.
Params:
Returns:the hash code value for this map
/** * Gets the hash code value for this map as per the API. * * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return the hash code value for this map */
private int doHashCode(final DataElement dataElement) { int total = 0; if (nodeCount > 0) { for (final MapIterator<?, ?> it = getMapIterator(dataElement); it.hasNext(); ) { final Object key = it.next(); final Object value = it.getValue(); total += key.hashCode() ^ value.hashCode(); } } return total; }
Gets the string form of this map as per AbstractMap.
Params:
Returns:the string form of this map
/** * Gets the string form of this map as per AbstractMap. * * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return the string form of this map */
private String doToString(final DataElement dataElement) { if (nodeCount == 0) { return "{}"; } final StringBuilder buf = new StringBuilder(nodeCount * 32); buf.append('{'); final MapIterator<?, ?> it = getMapIterator(dataElement); boolean hasNext = it.hasNext(); while (hasNext) { final Object key = it.next(); final Object value = it.getValue(); buf.append(key == this ? "(this Map)" : key) .append('=') .append(value == this ? "(this Map)" : value); hasNext = it.hasNext(); if (hasNext) { buf.append(", "); } } buf.append('}'); return buf.toString(); } private MapIterator<?, ?> getMapIterator(final DataElement dataElement) { switch (dataElement) { case KEY: return new ViewMapIterator(KEY); case VALUE: return new InverseViewMapIterator(VALUE); default: throw new IllegalArgumentException(); } }
Reads the content of the stream.
Params:
  • stream – the input stream
Throws:
/** * Reads the content of the stream. * * @param stream the input stream * @throws IOException if an error occurs while reading from the stream * @throws ClassNotFoundException if an object read from the stream can not be loaded */
@SuppressWarnings("unchecked") // This will fail at runtime if the stream is incorrect private void readObject(final ObjectInputStream stream) throws IOException, ClassNotFoundException{ stream.defaultReadObject(); rootNode = new Node[2]; final int size = stream.readInt(); for(int i = 0; i < size; i++){ final K k =(K) stream.readObject(); final V v =(V) stream.readObject(); put(k, v); } }
Writes the content to the stream for serialization.
Params:
  • stream – the output stream
Throws:
  • IOException – if an error occurs while writing to the stream
/** * Writes the content to the stream for serialization. * * @param stream the output stream * @throws IOException if an error occurs while writing to the stream */
private void writeObject(final ObjectOutputStream stream) throws IOException{ stream.defaultWriteObject(); stream.writeInt(this.size()); for (final Entry<K, V> entry : entrySet()) { stream.writeObject(entry.getKey()); stream.writeObject(entry.getValue()); } } //-----------------------------------------------------------------------
A view of this map.
/** * A view of this map. */
abstract class View<E> extends AbstractSet<E> {
Whether to return KEY or VALUE order.
/** Whether to return KEY or VALUE order. */
final DataElement orderType;
Constructor.
Params:
  • orderType – the KEY or VALUE int for the order
/** * Constructor. * @param orderType the KEY or VALUE int for the order */
View(final DataElement orderType) { super(); this.orderType = orderType; } @Override public int size() { return TreeBidiMap.this.size(); } @Override public void clear() { TreeBidiMap.this.clear(); } } class KeyView extends View<K> {
Create a new TreeBidiMap.KeyView.
/** * Create a new TreeBidiMap.KeyView. */
public KeyView(final DataElement orderType) { super(orderType); } @Override public Iterator<K> iterator() { return new ViewMapIterator(orderType); } @Override public boolean contains(final Object obj) { checkNonNullComparable(obj, KEY); return lookupKey(obj) != null; } @Override public boolean remove(final Object o) { return doRemoveKey(o) != null; } } class ValueView extends View<V> {
Create a new TreeBidiMap.ValueView.
/** * Create a new TreeBidiMap.ValueView. */
public ValueView(final DataElement orderType) { super(orderType); } @Override public Iterator<V> iterator() { return new InverseViewMapIterator(orderType); } @Override public boolean contains(final Object obj) { checkNonNullComparable(obj, VALUE); return lookupValue(obj) != null; } @Override public boolean remove(final Object o) { return doRemoveValue(o) != null; } }
A view of this map.
/** * A view of this map. */
class EntryView extends View<Map.Entry<K, V>> { EntryView() { super(KEY); } @Override public boolean contains(final Object obj) { if (obj instanceof Map.Entry == false) { return false; } final Map.Entry<?, ?> entry = (Map.Entry<?, ?>) obj; final Object value = entry.getValue(); final Node<K, V> node = lookupKey(entry.getKey()); return node != null && node.getValue().equals(value); } @Override public boolean remove(final Object obj) { if (obj instanceof Map.Entry == false) { return false; } final Map.Entry<?, ?> entry = (Map.Entry<?, ?>) obj; final Object value = entry.getValue(); final Node<K, V> node = lookupKey(entry.getKey()); if (node != null && node.getValue().equals(value)) { doRedBlackDelete(node); return true; } return false; } @Override public Iterator<Map.Entry<K, V>> iterator() { return new ViewMapEntryIterator(); } }
A view of this map.
/** * A view of this map. */
class InverseEntryView extends View<Map.Entry<V, K>> { InverseEntryView() { super(VALUE); } @Override public boolean contains(final Object obj) { if (obj instanceof Map.Entry == false) { return false; } final Map.Entry<?, ?> entry = (Map.Entry<?, ?>) obj; final Object value = entry.getValue(); final Node<K, V> node = lookupValue(entry.getKey()); return node != null && node.getKey().equals(value); } @Override public boolean remove(final Object obj) { if (obj instanceof Map.Entry == false) { return false; } final Map.Entry<?, ?> entry = (Map.Entry<?, ?>) obj; final Object value = entry.getValue(); final Node<K, V> node = lookupValue(entry.getKey()); if (node != null && node.getKey().equals(value)) { doRedBlackDelete(node); return true; } return false; } @Override public Iterator<Map.Entry<V, K>> iterator() { return new InverseViewMapEntryIterator(); } } //-----------------------------------------------------------------------
An iterator over the map.
/** * An iterator over the map. */
abstract class ViewIterator {
Whether to return KEY or VALUE order.
/** Whether to return KEY or VALUE order. */
private final DataElement orderType;
The last node returned by the iterator.
/** The last node returned by the iterator. */
Node<K, V> lastReturnedNode;
The next node to be returned by the iterator.
/** The next node to be returned by the iterator. */
private Node<K, V> nextNode;
The previous node in the sequence returned by the iterator.
/** The previous node in the sequence returned by the iterator. */
private Node<K, V> previousNode;
The modification count.
/** The modification count. */
private int expectedModifications;
Constructor.
Params:
  • orderType – the KEY or VALUE int for the order
/** * Constructor. * @param orderType the KEY or VALUE int for the order */
ViewIterator(final DataElement orderType) { super(); this.orderType = orderType; expectedModifications = modifications; nextNode = leastNode(rootNode[orderType.ordinal()], orderType); lastReturnedNode = null; previousNode = null; } public final boolean hasNext() { return nextNode != null; } protected Node<K, V> navigateNext() { if (nextNode == null) { throw new NoSuchElementException(); } if (modifications != expectedModifications) { throw new ConcurrentModificationException(); } lastReturnedNode = nextNode; previousNode = nextNode; nextNode = nextGreater(nextNode, orderType); return lastReturnedNode; } public boolean hasPrevious() { return previousNode != null; } protected Node<K, V> navigatePrevious() { if (previousNode == null) { throw new NoSuchElementException(); } if (modifications != expectedModifications) { throw new ConcurrentModificationException(); } nextNode = lastReturnedNode; if (nextNode == null) { nextNode = nextGreater(previousNode, orderType); } lastReturnedNode = previousNode; previousNode = nextSmaller(previousNode, orderType); return lastReturnedNode; } public final void remove() { if (lastReturnedNode == null) { throw new IllegalStateException(); } if (modifications != expectedModifications) { throw new ConcurrentModificationException(); } doRedBlackDelete(lastReturnedNode); expectedModifications++; lastReturnedNode = null; if (nextNode == null) { previousNode = greatestNode(rootNode[orderType.ordinal()], orderType); } else { previousNode = nextSmaller(nextNode, orderType); } } } //-----------------------------------------------------------------------
An iterator over the map.
/** * An iterator over the map. */
class ViewMapIterator extends ViewIterator implements OrderedMapIterator<K, V> {
Constructor.
/** * Constructor. */
ViewMapIterator(final DataElement orderType) { super(orderType); } @Override public K getKey() { if (lastReturnedNode == null) { throw new IllegalStateException( "Iterator getKey() can only be called after next() and before remove()"); } return lastReturnedNode.getKey(); } @Override public V getValue() { if (lastReturnedNode == null) { throw new IllegalStateException( "Iterator getValue() can only be called after next() and before remove()"); } return lastReturnedNode.getValue(); } @Override public V setValue(final V obj) { throw new UnsupportedOperationException(); } @Override public K next() { return navigateNext().getKey(); } @Override public K previous() { return navigatePrevious().getKey(); } }
An iterator over the map.
/** * An iterator over the map. */
class InverseViewMapIterator extends ViewIterator implements OrderedMapIterator<V, K> {
Create a new TreeBidiMap.InverseViewMapIterator.
/** * Create a new TreeBidiMap.InverseViewMapIterator. */
public InverseViewMapIterator(final DataElement orderType) { super(orderType); } @Override public V getKey() { if (lastReturnedNode == null) { throw new IllegalStateException( "Iterator getKey() can only be called after next() and before remove()"); } return lastReturnedNode.getValue(); } @Override public K getValue() { if (lastReturnedNode == null) { throw new IllegalStateException( "Iterator getValue() can only be called after next() and before remove()"); } return lastReturnedNode.getKey(); } @Override public K setValue(final K obj) { throw new UnsupportedOperationException(); } @Override public V next() { return navigateNext().getValue(); } @Override public V previous() { return navigatePrevious().getValue(); } }
An iterator over the map entries.
/** * An iterator over the map entries. */
class ViewMapEntryIterator extends ViewIterator implements OrderedIterator<Map.Entry<K, V>> {
Constructor.
/** * Constructor. */
ViewMapEntryIterator() { super(KEY); } @Override public Map.Entry<K, V> next() { return navigateNext(); } @Override public Map.Entry<K, V> previous() { return navigatePrevious(); } }
An iterator over the inverse map entries.
/** * An iterator over the inverse map entries. */
class InverseViewMapEntryIterator extends ViewIterator implements OrderedIterator<Map.Entry<V, K>> {
Constructor.
/** * Constructor. */
InverseViewMapEntryIterator() { super(VALUE); } @Override public Map.Entry<V, K> next() { return createEntry(navigateNext()); } @Override public Map.Entry<V, K> previous() { return createEntry(navigatePrevious()); } private Map.Entry<V, K> createEntry(final Node<K, V> node) { return new UnmodifiableMapEntry<>(node.getValue(), node.getKey()); } } //----------------------------------------------------------------------- //-----------------------------------------------------------------------
A node used to store the data.
/** * A node used to store the data. */
static class Node<K extends Comparable<K>, V extends Comparable<V>> implements Map.Entry<K, V>, KeyValue<K, V> { private final K key; private final V value; private final Node<K, V>[] leftNode; private final Node<K, V>[] rightNode; private final Node<K, V>[] parentNode; private final boolean[] blackColor; private int hashcodeValue; private boolean calculatedHashCode;
Make a new cell with given key and value, and with null links, and black (true) colors.
Params:
  • key – the key of this node
  • value – the value of this node
/** * Make a new cell with given key and value, and with null * links, and black (true) colors. * * @param key the key of this node * @param value the value of this node */
@SuppressWarnings("unchecked") Node(final K key, final V value) { super(); this.key = key; this.value = value; leftNode = new Node[2]; rightNode = new Node[2]; parentNode = new Node[2]; blackColor = new boolean[] { true, true }; calculatedHashCode = false; } private Object getData(final DataElement dataElement) { switch (dataElement) { case KEY: return getKey(); case VALUE: return getValue(); default: throw new IllegalArgumentException(); } } private void setLeft(final Node<K, V> node, final DataElement dataElement) { leftNode[dataElement.ordinal()] = node; } private Node<K, V> getLeft(final DataElement dataElement) { return leftNode[dataElement.ordinal()]; } private void setRight(final Node<K, V> node, final DataElement dataElement) { rightNode[dataElement.ordinal()] = node; } private Node<K, V> getRight(final DataElement dataElement) { return rightNode[dataElement.ordinal()]; }
Set this node's parent node.
Params:
/** * Set this node's parent node. * * @param node the new parent node * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private void setParent(final Node<K, V> node, final DataElement dataElement) { parentNode[dataElement.ordinal()] = node; }
Get the parent node.
Params:
Returns:the parent node, may be null
/** * Get the parent node. * * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return the parent node, may be null */
private Node<K, V> getParent(final DataElement dataElement) { return parentNode[dataElement.ordinal()]; }
Exchange colors with another node.
Params:
/** * Exchange colors with another node. * * @param node the node to swap with * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private void swapColors(final Node<K, V> node, final DataElement dataElement) { // Swap colors -- old hacker's trick blackColor[dataElement.ordinal()] ^= node.blackColor[dataElement.ordinal()]; node.blackColor[dataElement.ordinal()] ^= blackColor[dataElement.ordinal()]; blackColor[dataElement.ordinal()] ^= node.blackColor[dataElement.ordinal()]; }
Is this node black?
Params:
Returns:true if black (which is represented as a true boolean)
/** * Is this node black? * * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return true if black (which is represented as a true boolean) */
private boolean isBlack(final DataElement dataElement) { return blackColor[dataElement.ordinal()]; }
Is this node red?
Params:
Returns:true if non-black
/** * Is this node red? * * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. * @return true if non-black */
private boolean isRed(final DataElement dataElement) { return !blackColor[dataElement.ordinal()]; }
Make this node black.
Params:
/** * Make this node black. * * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private void setBlack(final DataElement dataElement) { blackColor[dataElement.ordinal()] = true; }
Make this node red.
Params:
/** * Make this node red. * * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private void setRed(final DataElement dataElement) { blackColor[dataElement.ordinal()] = false; }
Make this node the same color as another
Params:
  • node – the node whose color we're adopting
  • dataElement – either DataElement.KEY key} or the value.
/** * Make this node the same color as another * * @param node the node whose color we're adopting * @param dataElement either {@link DataElement#KEY} key} * or the {@link DataElement#VALUE value}. */
private void copyColor(final Node<K, V> node, final DataElement dataElement) { blackColor[dataElement.ordinal()] = node.blackColor[dataElement.ordinal()]; } private boolean isLeftChild(final DataElement dataElement) { return parentNode[dataElement.ordinal()] != null && parentNode[dataElement.ordinal()].leftNode[dataElement.ordinal()] == this; } private boolean isRightChild(final DataElement dataElement) { return parentNode[dataElement.ordinal()] != null && parentNode[dataElement.ordinal()].rightNode[dataElement.ordinal()] == this; } //-------------------------------------------------------------------
Gets the key.
Returns:the key corresponding to this entry.
/** * Gets the key. * * @return the key corresponding to this entry. */
@Override public K getKey() { return key; }
Gets the value.
Returns:the value corresponding to this entry.
/** * Gets the value. * * @return the value corresponding to this entry. */
@Override public V getValue() { return value; }
Optional operation that is not permitted in this implementation
Params:
  • ignored – this parameter is ignored.
Throws:
Returns:does not return
/** * Optional operation that is not permitted in this implementation * * @param ignored this parameter is ignored. * @return does not return * @throws UnsupportedOperationException always */
@Override public V setValue(final V ignored) throws UnsupportedOperationException { throw new UnsupportedOperationException("Map.Entry.setValue is not supported"); }
Compares the specified object with this entry for equality. Returns true if the given object is also a map entry and the two entries represent the same mapping.
Params:
  • obj – the object to be compared for equality with this entry.
Returns:true if the specified object is equal to this entry.
/** * Compares the specified object with this entry for equality. * Returns true if the given object is also a map entry and * the two entries represent the same mapping. * * @param obj the object to be compared for equality with this entry. * @return true if the specified object is equal to this entry. */
@Override public boolean equals(final Object obj) { if (obj == this) { return true; } if (!(obj instanceof Map.Entry)) { return false; } final Map.Entry<?, ?> e = (Map.Entry<?, ?>) obj; return getKey().equals(e.getKey()) && getValue().equals(e.getValue()); }
Returns:the hash code value for this map entry.
/** * @return the hash code value for this map entry. */
@Override public int hashCode() { if (!calculatedHashCode) { hashcodeValue = getKey().hashCode() ^ getValue().hashCode(); calculatedHashCode = true; } return hashcodeValue; } } //-----------------------------------------------------------------------
The inverse map implementation.
/** * The inverse map implementation. */
class Inverse implements OrderedBidiMap<V, K> {
Store the keySet once created.
/** Store the keySet once created. */
private Set<V> inverseKeySet;
Store the valuesSet once created.
/** Store the valuesSet once created. */
private Set<K> inverseValuesSet;
Store the entrySet once created.
/** Store the entrySet once created. */
private Set<Map.Entry<V, K>> inverseEntrySet; @Override public int size() { return TreeBidiMap.this.size(); } @Override public boolean isEmpty() { return TreeBidiMap.this.isEmpty(); } @Override public K get(final Object key) { return TreeBidiMap.this.getKey(key); } @Override public V getKey(final Object value) { return TreeBidiMap.this.get(value); } @Override public boolean containsKey(final Object key) { return TreeBidiMap.this.containsValue(key); } @Override public boolean containsValue(final Object value) { return TreeBidiMap.this.containsKey(value); } @Override public V firstKey() { if (TreeBidiMap.this.nodeCount == 0) { throw new NoSuchElementException("Map is empty"); } return leastNode(TreeBidiMap.this.rootNode[VALUE.ordinal()], VALUE).getValue(); } @Override public V lastKey() { if (TreeBidiMap.this.nodeCount == 0) { throw new NoSuchElementException("Map is empty"); } return greatestNode(TreeBidiMap.this.rootNode[VALUE.ordinal()], VALUE).getValue(); } @Override public V nextKey(final V key) { checkKey(key); final Node<K, V> node = nextGreater(TreeBidiMap.this.<V>lookup(key, VALUE), VALUE); return node == null ? null : node.getValue(); } @Override public V previousKey(final V key) { checkKey(key); final Node<K, V> node = TreeBidiMap.this.nextSmaller(TreeBidiMap.this.<V>lookup(key, VALUE), VALUE); return node == null ? null : node.getValue(); } @Override public K put(final V key, final K value) { final K result = get(key); TreeBidiMap.this.doPut(value, key); return result; } @Override public void putAll(final Map<? extends V, ? extends K> map) { for (final Map.Entry<? extends V, ? extends K> e : map.entrySet()) { put(e.getKey(), e.getValue()); } } @Override public K remove(final Object key) { return TreeBidiMap.this.removeValue(key); } @Override public V removeValue(final Object value) { return TreeBidiMap.this.remove(value); } @Override public void clear() { TreeBidiMap.this.clear(); } @Override public Set<V> keySet() { if (inverseKeySet == null) { inverseKeySet = new ValueView(VALUE); } return inverseKeySet; } @Override public Set<K> values() { if (inverseValuesSet == null) { inverseValuesSet = new KeyView(VALUE); } return inverseValuesSet; } @Override public Set<Map.Entry<V, K>> entrySet() { if (inverseEntrySet == null) { inverseEntrySet = new InverseEntryView(); } return inverseEntrySet; } @Override public OrderedMapIterator<V, K> mapIterator() { if (isEmpty()) { return EmptyOrderedMapIterator.<V, K>emptyOrderedMapIterator(); } return new InverseViewMapIterator(VALUE); } @Override public OrderedBidiMap<K, V> inverseBidiMap() { return TreeBidiMap.this; } @Override public boolean equals(final Object obj) { return TreeBidiMap.this.doEquals(obj, DataElement.VALUE); } @Override public int hashCode() { return TreeBidiMap.this.doHashCode(DataElement.VALUE); } @Override public String toString() { return TreeBidiMap.this.doToString(DataElement.VALUE); } } }