/*
 * Copyright (c) 1996, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.security.ssl;

import java.io.*;
import java.math.BigInteger;
import java.security.*;
import java.security.interfaces.*;
import java.security.spec.*;
import java.security.cert.*;
import java.security.cert.Certificate;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;

import java.lang.reflect.*;

import javax.security.auth.x500.X500Principal;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.DHPublicKeySpec;

import javax.net.ssl.*;

import sun.security.internal.spec.TlsPrfParameterSpec;
import sun.security.ssl.CipherSuite.*;
import static sun.security.ssl.CipherSuite.PRF.*;
import sun.security.util.KeyUtil;
import sun.security.util.MessageDigestSpi2;
import sun.security.provider.certpath.OCSPResponse;

Many data structures are involved in the handshake messages. These classes are used as structures, with public data members. They are not visible outside the SSL package. Handshake messages all have a common header format, and they are all encoded in a "handshake data" SSL record substream. The base class here (HandshakeMessage) provides a common framework and records the SSL record type of the particular handshake message. This file contains subclasses for all the basic handshake messages. All handshake messages know how to encode and decode themselves on SSL streams; this facilitates using the same code on SSL client and server sides, although they don't send and receive the same messages. Messages also know how to print themselves, which is quite handy for debugging. They always identify their type, and can optionally dump all of their content.
Author:David Brownell
/** * Many data structures are involved in the handshake messages. These * classes are used as structures, with public data members. They are * not visible outside the SSL package. * * Handshake messages all have a common header format, and they are all * encoded in a "handshake data" SSL record substream. The base class * here (HandshakeMessage) provides a common framework and records the * SSL record type of the particular handshake message. * * This file contains subclasses for all the basic handshake messages. * All handshake messages know how to encode and decode themselves on * SSL streams; this facilitates using the same code on SSL client and * server sides, although they don't send and receive the same messages. * * Messages also know how to print themselves, which is quite handy * for debugging. They always identify their type, and can optionally * dump all of their content. * * @author David Brownell */
public abstract class HandshakeMessage { /* Class and subclass dynamic debugging support */ public static final Debug debug = Debug.getInstance("ssl"); // enum HandshakeType: static final byte ht_hello_request = 0; // RFC 5246 static final byte ht_client_hello = 1; // RFC 5246 static final byte ht_server_hello = 2; // RFC 5246 static final byte ht_hello_verify_request = 3; // RFC 6347 static final byte ht_new_session_ticket = 4; // RFC 4507 static final byte ht_certificate = 11; // RFC 5246 static final byte ht_server_key_exchange = 12; // RFC 5246 static final byte ht_certificate_request = 13; // RFC 5246 static final byte ht_server_hello_done = 14; // RFC 5246 static final byte ht_certificate_verify = 15; // RFC 5246 static final byte ht_client_key_exchange = 16; // RFC 5246 static final byte ht_finished = 20; // RFC 5246 static final byte ht_certificate_url = 21; // RFC 6066 static final byte ht_certificate_status = 22; // RFC 6066 static final byte ht_supplemental_data = 23; // RFC 4680 static final byte ht_not_applicable = -1; // N/A /* * SSL 3.0 MAC padding constants. * Also used by CertificateVerify and Finished during the handshake. */ static final byte[] MD5_pad1 = genPad(0x36, 48); static final byte[] MD5_pad2 = genPad(0x5c, 48); static final byte[] SHA_pad1 = genPad(0x36, 40); static final byte[] SHA_pad2 = genPad(0x5c, 40); // default constructor HandshakeMessage() { }
Utility method to convert a BigInteger to a byte array in unsigned format as needed in the handshake messages. BigInteger uses 2's complement format, i.e. it prepends an extra zero if the MSB is set. We remove that.
/** * Utility method to convert a BigInteger to a byte array in unsigned * format as needed in the handshake messages. BigInteger uses * 2's complement format, i.e. it prepends an extra zero if the MSB * is set. We remove that. */
static byte[] toByteArray(BigInteger bi) { byte[] b = bi.toByteArray(); if ((b.length > 1) && (b[0] == 0)) { int n = b.length - 1; byte[] newarray = new byte[n]; System.arraycopy(b, 1, newarray, 0, n); b = newarray; } return b; } private static byte[] genPad(int b, int count) { byte[] padding = new byte[count]; Arrays.fill(padding, (byte)b); return padding; } /* * Write a handshake message on the (handshake) output stream. * This is just a four byte header followed by the data. * * NOTE that huge messages -- notably, ones with huge cert * chains -- are handled correctly. */ final void write(HandshakeOutStream s) throws IOException { int len = messageLength(); if (len >= Record.OVERFLOW_OF_INT24) { throw new SSLException("Handshake message too big" + ", type = " + messageType() + ", len = " + len); } s.write(messageType()); s.putInt24(len); send(s); s.complete(); } /* * Subclasses implement these methods so those kinds of * messages can be emitted. Base class delegates to subclass. */ abstract int messageType(); abstract int messageLength(); abstract void send(HandshakeOutStream s) throws IOException; /* * Write a descriptive message on the output stream; for debugging. */ abstract void print(PrintStream p) throws IOException; // // NOTE: the rest of these classes are nested within this one, and are // imported by other classes in this package. There are a few other // handshake message classes, not neatly nested here because of current // licensing requirement for native (RSA) methods. They belong here, // but those native methods complicate things a lot! // /* * HelloRequest ... SERVER --> CLIENT * * Server can ask the client to initiate a new handshake, e.g. to change * session parameters after a connection has been (re)established. */ static final class HelloRequest extends HandshakeMessage { @Override int messageType() { return ht_hello_request; } HelloRequest() { } HelloRequest(HandshakeInStream in) throws IOException { // nothing in this message } @Override int messageLength() { return 0; } @Override void send(HandshakeOutStream out) throws IOException { // nothing in this messaage } @Override void print(PrintStream out) throws IOException { out.println("*** HelloRequest (empty)"); } } /* * HelloVerifyRequest ... SERVER --> CLIENT [DTLS only] * * The definition of HelloVerifyRequest is as follows: * * struct { * ProtocolVersion server_version; * opaque cookie<0..2^8-1>; * } HelloVerifyRequest; * * For DTLS protocols, once the client has transmitted the ClientHello message, * it expects to see a HelloVerifyRequest from the server. However, if the * server's message is lost, the client knows that either the ClientHello or * the HelloVerifyRequest has been lost and retransmits. [RFC 6347] */ static final class HelloVerifyRequest extends HandshakeMessage { ProtocolVersion protocolVersion; byte[] cookie; // 1 to 2^8 - 1 bytes HelloVerifyRequest(HelloCookieManager helloCookieManager, ClientHello clientHelloMsg) { this.protocolVersion = clientHelloMsg.protocolVersion; this.cookie = helloCookieManager.getCookie(clientHelloMsg); } HelloVerifyRequest( HandshakeInStream input, int messageLength) throws IOException { this.protocolVersion = ProtocolVersion.valueOf(input.getInt8(), input.getInt8()); this.cookie = input.getBytes8(); // Is it a valid cookie? HelloCookieManager.checkCookie(protocolVersion, cookie); } @Override int messageType() { return ht_hello_verify_request; } @Override int messageLength() { return 2 + cookie.length; // 2: the length of protocolVersion } @Override void send(HandshakeOutStream hos) throws IOException { hos.putInt8(protocolVersion.major); hos.putInt8(protocolVersion.minor); hos.putBytes8(cookie); } @Override void print(PrintStream out) throws IOException { out.println("*** HelloVerifyRequest"); if (debug != null && Debug.isOn("verbose")) { out.println("server_version: " + protocolVersion); Debug.println(out, "cookie", cookie); } } } /* * ClientHello ... CLIENT --> SERVER * * Client initiates handshake by telling server what it wants, and what it * can support (prioritized by what's first in the ciphe suite list). * * By RFC2246:7.4.1.2 it's explicitly anticipated that this message * will have more data added at the end ... e.g. what CAs the client trusts. * Until we know how to parse it, we will just read what we know * about, and let our caller handle the jumps over unknown data. */ static final class ClientHello extends HandshakeMessage { ProtocolVersion protocolVersion; RandomCookie clnt_random; SessionId sessionId; byte[] cookie; // DTLS only private CipherSuiteList cipherSuites; private final boolean isDTLS; byte[] compression_methods; HelloExtensions extensions = new HelloExtensions(); private static final byte[] NULL_COMPRESSION = new byte[] {0}; ClientHello(SecureRandom generator, ProtocolVersion protocolVersion, SessionId sessionId, CipherSuiteList cipherSuites, boolean isDTLS) { this.isDTLS = isDTLS; this.protocolVersion = protocolVersion; this.sessionId = sessionId; this.cipherSuites = cipherSuites; if (isDTLS) { this.cookie = new byte[0]; } else { this.cookie = null; } clnt_random = new RandomCookie(generator); compression_methods = NULL_COMPRESSION; } ClientHello(HandshakeInStream s, int messageLength, boolean isDTLS) throws IOException { this.isDTLS = isDTLS; protocolVersion = ProtocolVersion.valueOf(s.getInt8(), s.getInt8()); clnt_random = new RandomCookie(s); sessionId = new SessionId(s.getBytes8()); sessionId.checkLength(protocolVersion); if (isDTLS) { cookie = s.getBytes8(); } else { cookie = null; } cipherSuites = new CipherSuiteList(s); compression_methods = s.getBytes8(); if (messageLength() != messageLength) { extensions = new HelloExtensions(s); } } CipherSuiteList getCipherSuites() { return cipherSuites; } // add renegotiation_info extension void addRenegotiationInfoExtension(byte[] clientVerifyData) { HelloExtension renegotiationInfo = new RenegotiationInfoExtension( clientVerifyData, new byte[0]); extensions.add(renegotiationInfo); } // add server_name extension void addSNIExtension(List<SNIServerName> serverNames) { try { extensions.add(new ServerNameExtension(serverNames)); } catch (IOException ioe) { // ignore the exception and return } } // add signature_algorithm extension void addSignatureAlgorithmsExtension( Collection<SignatureAndHashAlgorithm> algorithms) { HelloExtension signatureAlgorithm = new SignatureAlgorithmsExtension(algorithms); extensions.add(signatureAlgorithm); } void addExtendedMasterSecretExtension() { extensions.add(new ExtendedMasterSecretExtension()); } void addMFLExtension(int maximumPacketSize) { HelloExtension maxFragmentLength = new MaxFragmentLengthExtension(maximumPacketSize); extensions.add(maxFragmentLength); } void updateHelloCookie(MessageDigest cookieDigest) { // // Just use HandshakeOutStream to compute the hello verify cookie. // Not actually used to output handshake message records. // HandshakeOutStream hos = new HandshakeOutStream(null); try { send(hos, false); // Do not count hello verify cookie. } catch (IOException ioe) { // unlikely to happen } cookieDigest.update(hos.toByteArray()); } // Add status_request extension type void addCertStatusRequestExtension() { extensions.add(new CertStatusReqExtension(StatusRequestType.OCSP, new OCSPStatusRequest())); } // Add status_request_v2 extension type void addCertStatusReqListV2Extension() { // Create a default OCSPStatusRequest that we can use for both // OCSP_MULTI and OCSP request list items. OCSPStatusRequest osr = new OCSPStatusRequest(); List<CertStatusReqItemV2> itemList = new ArrayList<>(2); itemList.add(new CertStatusReqItemV2(StatusRequestType.OCSP_MULTI, osr)); itemList.add(new CertStatusReqItemV2(StatusRequestType.OCSP, osr)); extensions.add(new CertStatusReqListV2Extension(itemList)); } // add application_layer_protocol_negotiation extension void addALPNExtension(String[] applicationProtocols) throws SSLException { extensions.add(new ALPNExtension(applicationProtocols)); } @Override int messageType() { return ht_client_hello; } @Override int messageLength() { /* * Add fixed size parts of each field... * version + random + session + cipher + compress */ return (2 + 32 + 1 + 2 + 1 + sessionId.length() /* ... + variable parts */ + (isDTLS ? (1 + cookie.length) : 0) + (cipherSuites.size() * 2) + compression_methods.length) + extensions.length(); } @Override void send(HandshakeOutStream s) throws IOException { send(s, true); // Count hello verify cookie. } @Override void print(PrintStream s) throws IOException { s.println("*** ClientHello, " + protocolVersion); if (debug != null && Debug.isOn("verbose")) { s.print("RandomCookie: "); clnt_random.print(s); s.print("Session ID: "); s.println(sessionId); if (isDTLS) { Debug.println(s, "cookie", cookie); } s.println("Cipher Suites: " + cipherSuites); Debug.println(s, "Compression Methods", compression_methods); extensions.print(s); s.println("***"); } } private void send(HandshakeOutStream s, boolean computeCookie) throws IOException { s.putInt8(protocolVersion.major); s.putInt8(protocolVersion.minor); clnt_random.send(s); s.putBytes8(sessionId.getId()); if (isDTLS && computeCookie) { s.putBytes8(cookie); } cipherSuites.send(s); s.putBytes8(compression_methods); extensions.send(s); } } /* * ServerHello ... SERVER --> CLIENT * * Server chooses protocol options from among those it supports and the * client supports. Then it sends the basic session descriptive parameters * back to the client. */ static final class ServerHello extends HandshakeMessage { @Override int messageType() { return ht_server_hello; } ProtocolVersion protocolVersion; RandomCookie svr_random; SessionId sessionId; CipherSuite cipherSuite; byte compression_method; HelloExtensions extensions = new HelloExtensions(); ServerHello() { // empty } ServerHello(HandshakeInStream input, int messageLength) throws IOException { protocolVersion = ProtocolVersion.valueOf(input.getInt8(), input.getInt8()); svr_random = new RandomCookie(input); sessionId = new SessionId(input.getBytes8()); sessionId.checkLength(protocolVersion); cipherSuite = CipherSuite.valueOf(input.getInt8(), input.getInt8()); compression_method = (byte)input.getInt8(); if (messageLength() != messageLength) { extensions = new HelloExtensions(input); } } @Override int messageLength() { // almost fixed size, except session ID and extensions: // major + minor = 2 // random = 32 // session ID len field = 1 // cipher suite + compression = 3 // extensions: if present, 2 + length of extensions return 38 + sessionId.length() + extensions.length(); } @Override void send(HandshakeOutStream s) throws IOException { s.putInt8(protocolVersion.major); s.putInt8(protocolVersion.minor); svr_random.send(s); s.putBytes8(sessionId.getId()); s.putInt8(cipherSuite.id >> 8); s.putInt8(cipherSuite.id & 0xff); s.putInt8(compression_method); extensions.send(s); } @Override void print(PrintStream s) throws IOException { s.println("*** ServerHello, " + protocolVersion); if (debug != null && Debug.isOn("verbose")) { s.print("RandomCookie: "); svr_random.print(s); s.print("Session ID: "); s.println(sessionId); s.println("Cipher Suite: " + cipherSuite); s.println("Compression Method: " + compression_method); extensions.print(s); s.println("***"); } } } /* * CertificateMsg ... send by both CLIENT and SERVER * * Each end of a connection may need to pass its certificate chain to * the other end. Such chains are intended to validate an identity with * reference to some certifying authority. Examples include companies * like Verisign, or financial institutions. There's some control over * the certifying authorities which are sent. * * NOTE: that these messages might be huge, taking many handshake records. * Up to 2^48 bytes of certificate may be sent, in records of at most 2^14 * bytes each ... up to 2^32 records sent on the output stream. */ static final class CertificateMsg extends HandshakeMessage { @Override int messageType() { return ht_certificate; } private X509Certificate[] chain; private List<byte[]> encodedChain; private int messageLength; CertificateMsg(X509Certificate[] certs) { chain = certs; } CertificateMsg(HandshakeInStream input) throws IOException { int chainLen = input.getInt24(); List<Certificate> v = new ArrayList<>(4); CertificateFactory cf = null; while (chainLen > 0) { byte[] cert = input.getBytes24(); chainLen -= (3 + cert.length); try { if (cf == null) { cf = CertificateFactory.getInstance("X.509"); } v.add(cf.generateCertificate(new ByteArrayInputStream(cert))); } catch (CertificateException e) { throw (SSLProtocolException)new SSLProtocolException( e.getMessage()).initCause(e); } } chain = v.toArray(new X509Certificate[v.size()]); } @Override int messageLength() { if (encodedChain == null) { messageLength = 3; encodedChain = new ArrayList<byte[]>(chain.length); try { for (X509Certificate cert : chain) { byte[] b = cert.getEncoded(); encodedChain.add(b); messageLength += b.length + 3; } } catch (CertificateEncodingException e) { encodedChain = null; throw new RuntimeException("Could not encode certificates", e); } } return messageLength; } @Override void send(HandshakeOutStream s) throws IOException { s.putInt24(messageLength() - 3); for (byte[] b : encodedChain) { s.putBytes24(b); } } @Override void print(PrintStream s) throws IOException { s.println("*** Certificate chain"); if (chain.length == 0) { s.println("<Empty>"); } else if (debug != null && Debug.isOn("verbose")) { for (int i = 0; i < chain.length; i++) { s.println("chain [" + i + "] = " + chain[i]); } } s.println("***"); } X509Certificate[] getCertificateChain() { return chain.clone(); } } /* * CertificateStatus ... SERVER --> CLIENT * * When a ClientHello asserting the status_request or status_request_v2 * extensions is accepted by the server, it will fetch and return one * or more status responses in this handshake message. * * NOTE: Like the Certificate handshake message, this can potentially * be a very large message both due to the size of multiple status * responses and the certificate chains that are often attached to them. * Up to 2^24 bytes of status responses may be sent, possibly fragmented * over multiple TLS records. */ static final class CertificateStatus extends HandshakeMessage { private final StatusRequestType statusType; private int encodedResponsesLen; private int messageLength = -1; private List<byte[]> encodedResponses; @Override int messageType() { return ht_certificate_status; }
Create a CertificateStatus message from the certificates and their respective OCSP responses
Params:
  • type – an indication of the type of response (OCSP or OCSP_MULTI)
  • responses – a List of OCSP responses in DER-encoded form. For the OCSP type, only the first entry in the response list is used, and must correspond to the end-entity certificate sent to the peer. Zero-length or null values for the response data are not allowed for the OCSP type. For the OCSP_MULTI type, each entry in the list should match its corresponding certificate sent in the Server Certificate message. Where an OCSP response does not exist, either a zero-length array or a null value should be used.
Throws:
  • SSLException – if an unsupported StatusRequestType or invalid OCSP response data is provided.
/** * Create a CertificateStatus message from the certificates and their * respective OCSP responses * * @param type an indication of the type of response (OCSP or OCSP_MULTI) * @param responses a {@code List} of OCSP responses in DER-encoded form. * For the OCSP type, only the first entry in the response list is * used, and must correspond to the end-entity certificate sent to the * peer. Zero-length or null values for the response data are not * allowed for the OCSP type. For the OCSP_MULTI type, each entry in * the list should match its corresponding certificate sent in the * Server Certificate message. Where an OCSP response does not exist, * either a zero-length array or a null value should be used. * * @throws SSLException if an unsupported StatusRequestType or invalid * OCSP response data is provided. */
CertificateStatus(StatusRequestType type, X509Certificate[] chain, Map<X509Certificate, byte[]> responses) { statusType = type; encodedResponsesLen = 0; encodedResponses = new ArrayList<>(chain.length); Objects.requireNonNull(chain, "Null chain not allowed"); Objects.requireNonNull(responses, "Null responses not allowed"); if (statusType == StatusRequestType.OCSP) { // Just get the response for the end-entity certificate byte[] respDER = responses.get(chain[0]); if (respDER != null && respDER.length > 0) { encodedResponses.add(respDER); encodedResponsesLen = 3 + respDER.length; } else { throw new IllegalArgumentException("Zero-length or null " + "OCSP Response"); } } else if (statusType == StatusRequestType.OCSP_MULTI) { for (X509Certificate cert : chain) { byte[] respDER = responses.get(cert); if (respDER != null) { encodedResponses.add(respDER); encodedResponsesLen += (respDER.length + 3); } else { // If we cannot find a response for a given certificate // then use a zero-length placeholder. encodedResponses.add(new byte[0]); encodedResponsesLen += 3; } } } else { throw new IllegalArgumentException( "Unsupported StatusResponseType: " + statusType); } }
Decode the CertificateStatus handshake message coming from a HandshakeInputStream.
Params:
  • input – the HandshakeInputStream containing the CertificateStatus message bytes.
Throws:
  • SSLHandshakeException – if a zero-length response is found in the OCSP response type, or an unsupported response type is detected.
  • IOException – if a decoding error occurs.
/** * Decode the CertificateStatus handshake message coming from a * {@code HandshakeInputStream}. * * @param input the {@code HandshakeInputStream} containing the * CertificateStatus message bytes. * * @throws SSLHandshakeException if a zero-length response is found in the * OCSP response type, or an unsupported response type is detected. * @throws IOException if a decoding error occurs. */
CertificateStatus(HandshakeInStream input) throws IOException { encodedResponsesLen = 0; encodedResponses = new ArrayList<>(); statusType = StatusRequestType.get(input.getInt8()); if (statusType == StatusRequestType.OCSP) { byte[] respDER = input.getBytes24(); // Convert the incoming bytes to a OCSPResponse strucutre if (respDER.length > 0) { encodedResponses.add(respDER); encodedResponsesLen = 3 + respDER.length; } else { throw new SSLHandshakeException("Zero-length OCSP Response"); } } else if (statusType == StatusRequestType.OCSP_MULTI) { int respListLen = input.getInt24(); encodedResponsesLen = respListLen; // Add each OCSP reponse into the array list in the order // we receive them off the wire. A zero-length array is // allowed for ocsp_multi, and means that a response for // a given certificate is not available. while (respListLen > 0) { byte[] respDER = input.getBytes24(); encodedResponses.add(respDER); respListLen -= (respDER.length + 3); } if (respListLen != 0) { throw new SSLHandshakeException( "Bad OCSP response list length"); } } else { throw new SSLHandshakeException("Unsupported StatusResponseType: " + statusType); } }
Get the length of the CertificateStatus message.
Returns:the length of the message in bytes.
/** * Get the length of the CertificateStatus message. * * @return the length of the message in bytes. */
@Override int messageLength() { int len = 1; // Length + Status type if (messageLength == -1) { if (statusType == StatusRequestType.OCSP) { len += encodedResponsesLen; } else if (statusType == StatusRequestType.OCSP_MULTI) { len += 3 + encodedResponsesLen; } messageLength = len; } return messageLength; }
Encode the CertificateStatus handshake message and place it on a HandshakeOutputStream.
Params:
  • s – the HandshakeOutputStream that will the message bytes.
Throws:
/** * Encode the CertificateStatus handshake message and place it on a * {@code HandshakeOutputStream}. * * @param s the HandshakeOutputStream that will the message bytes. * * @throws IOException if an encoding error occurs. */
@Override void send(HandshakeOutStream s) throws IOException { s.putInt8(statusType.id); if (statusType == StatusRequestType.OCSP) { s.putBytes24(encodedResponses.get(0)); } else if (statusType == StatusRequestType.OCSP_MULTI) { s.putInt24(encodedResponsesLen); for (byte[] respBytes : encodedResponses) { if (respBytes != null) { s.putBytes24(respBytes); } else { s.putBytes24(null); } } } else { // It is highly unlikely that we will fall into this section of // the code. throw new SSLHandshakeException("Unsupported status_type: " + statusType.id); } }
Display a human-readable representation of the CertificateStatus message.
Params:
  • s – the PrintStream used to display the message data.
Throws:
  • IOException – if any errors occur while parsing the OCSP response bytes into a readable form.
/** * Display a human-readable representation of the CertificateStatus message. * * @param s the PrintStream used to display the message data. * * @throws IOException if any errors occur while parsing the OCSP response * bytes into a readable form. */
@Override void print(PrintStream s) throws IOException { s.println("*** CertificateStatus"); if (debug != null && Debug.isOn("verbose")) { s.println("Type: " + statusType); if (statusType == StatusRequestType.OCSP) { OCSPResponse oResp = new OCSPResponse(encodedResponses.get(0)); s.println(oResp); } else if (statusType == StatusRequestType.OCSP_MULTI) { int numResponses = encodedResponses.size(); s.println(numResponses + (numResponses == 1 ? " entry:" : " entries:")); for (byte[] respDER : encodedResponses) { if (respDER.length > 0) { OCSPResponse oResp = new OCSPResponse(respDER); s.println(oResp); } else { s.println("<Zero-length entry>"); } } } } }
Get the type of CertificateStatus message
Returns:the StatusRequestType for this CertificateStatus message.
/** * Get the type of CertificateStatus message * * @return the {@code StatusRequestType} for this CertificateStatus * message. */
StatusRequestType getType() { return statusType; }
Get the list of non-zero length OCSP responses. The responses returned in this list can be used to map to X509Certificate objects provided by the peer and provided to a PKIXRevocationChecker.
Returns:an unmodifiable List of zero or more byte arrays, each one consisting of a single status response.
/** * Get the list of non-zero length OCSP responses. * The responses returned in this list can be used to map to * {@code X509Certificate} objects provided by the peer and * provided to a {@code PKIXRevocationChecker}. * * @return an unmodifiable List of zero or more byte arrays, each one * consisting of a single status response. */
List<byte[]> getResponses() { return Collections.unmodifiableList(encodedResponses); } } /* * ServerKeyExchange ... SERVER --> CLIENT * * The cipher suite selected, when combined with the certificate exchanged, * implies one of several different kinds of key exchange. Most current * cipher suites require the server to send more than its certificate. * * The primary exceptions are when a server sends an encryption-capable * RSA public key in its cert, to be used with RSA (or RSA_export) key * exchange; and when a server sends its Diffie-Hellman cert. Those kinds * of key exchange do not require a ServerKeyExchange message. * * Key exchange can be viewed as having three modes, which are explicit * for the Diffie-Hellman flavors and poorly specified for RSA ones: * * - "Ephemeral" keys. Here, a "temporary" key is allocated by the * server, and signed. Diffie-Hellman keys signed using RSA or * DSS are ephemeral (DHE flavor). RSA keys get used to do the same * thing, to cut the key size down to 512 bits (export restrictions) * or for signing-only RSA certificates. * * - Anonymity. Here no server certificate is sent, only the public * key of the server. This case is subject to man-in-the-middle * attacks. This can be done with Diffie-Hellman keys (DH_anon) or * with RSA keys, but is only used in SSLv3 for DH_anon. * * - "Normal" case. Here a server certificate is sent, and the public * key there is used directly in exchanging the premaster secret. * For example, Diffie-Hellman "DH" flavor, and any RSA flavor with * only 512 bit keys. * * If a server certificate is sent, there is no anonymity. However, * when a certificate is sent, ephemeral keys may still be used to * exchange the premaster secret. That's how RSA_EXPORT often works, * as well as how the DHE_* flavors work. */ abstract static class ServerKeyExchange extends HandshakeMessage { @Override int messageType() { return ht_server_key_exchange; } } /* * Using RSA for Key Exchange: exchange a session key that's not as big * as the signing-only key. Used for export applications, since exported * RSA encryption keys can't be bigger than 512 bytes. * * This is never used when keys are 512 bits or smaller, and isn't used * on "US Domestic" ciphers in any case. */ static final class RSA_ServerKeyExchange extends ServerKeyExchange { private byte[] rsa_modulus; // 1 to 2^16 - 1 bytes private byte[] rsa_exponent; // 1 to 2^16 - 1 bytes private Signature signature; private byte[] signatureBytes; /* * Hash the nonces and the ephemeral RSA public key. */ private void updateSignature(byte[] clntNonce, byte[] svrNonce) throws SignatureException { int tmp; signature.update(clntNonce); signature.update(svrNonce); tmp = rsa_modulus.length; signature.update((byte)(tmp >> 8)); signature.update((byte)(tmp & 0x0ff)); signature.update(rsa_modulus); tmp = rsa_exponent.length; signature.update((byte)(tmp >> 8)); signature.update((byte)(tmp & 0x0ff)); signature.update(rsa_exponent); } /* * Construct an RSA server key exchange message, using data * known _only_ to the server. * * The client knows the public key corresponding to this private * key, from the Certificate message sent previously. To comply * with US export regulations we use short RSA keys ... either * long term ones in the server's X509 cert, or else ephemeral * ones sent using this message. */ RSA_ServerKeyExchange(PublicKey ephemeralKey, PrivateKey privateKey, RandomCookie clntNonce, RandomCookie svrNonce, SecureRandom sr) throws GeneralSecurityException { RSAPublicKeySpec rsaKey = JsseJce.getRSAPublicKeySpec(ephemeralKey); rsa_modulus = toByteArray(rsaKey.getModulus()); rsa_exponent = toByteArray(rsaKey.getPublicExponent()); signature = RSASignature.getInstance(); signature.initSign(privateKey, sr); updateSignature(clntNonce.random_bytes, svrNonce.random_bytes); signatureBytes = signature.sign(); } /* * Parse an RSA server key exchange message, using data known * to the client (and, in some situations, eavesdroppers). */ RSA_ServerKeyExchange(HandshakeInStream input) throws IOException, NoSuchAlgorithmException { signature = RSASignature.getInstance(); rsa_modulus = input.getBytes16(); rsa_exponent = input.getBytes16(); signatureBytes = input.getBytes16(); } /* * Get the ephemeral RSA public key that will be used in this * SSL connection. */ PublicKey getPublicKey() { try { KeyFactory kfac = JsseJce.getKeyFactory("RSA"); // modulus and exponent are always positive RSAPublicKeySpec kspec = new RSAPublicKeySpec( new BigInteger(1, rsa_modulus), new BigInteger(1, rsa_exponent)); return kfac.generatePublic(kspec); } catch (Exception e) { throw new RuntimeException(e); } } /* * Verify the signed temporary key using the hashes computed * from it and the two nonces. This is called by clients * with "exportable" RSA flavors. */ boolean verify(PublicKey certifiedKey, RandomCookie clntNonce, RandomCookie svrNonce) throws GeneralSecurityException { signature.initVerify(certifiedKey); updateSignature(clntNonce.random_bytes, svrNonce.random_bytes); return signature.verify(signatureBytes); } @Override int messageLength() { return 6 + rsa_modulus.length + rsa_exponent.length + signatureBytes.length; } @Override void send(HandshakeOutStream s) throws IOException { s.putBytes16(rsa_modulus); s.putBytes16(rsa_exponent); s.putBytes16(signatureBytes); } @Override void print(PrintStream s) throws IOException { s.println("*** RSA ServerKeyExchange"); if (debug != null && Debug.isOn("verbose")) { Debug.println(s, "RSA Modulus", rsa_modulus); Debug.println(s, "RSA Public Exponent", rsa_exponent); } } } /* * Using Diffie-Hellman algorithm for key exchange. All we really need to * do is securely get Diffie-Hellman keys (using the same P, G parameters) * to our peer, then we automatically have a shared secret without need * to exchange any more data. (D-H only solutions, such as SKIP, could * eliminate key exchange negotiations and get faster connection setup. * But they still need a signature algorithm like DSS/DSA to support the * trusted distribution of keys without relying on unscalable physical * key distribution systems.) * * This class supports several DH-based key exchange algorithms, though * perhaps eventually each deserves its own class. Notably, this has * basic support for DH_anon and its DHE_DSS and DHE_RSA signed variants. */ static final class DH_ServerKeyExchange extends ServerKeyExchange { // Fix message encoding, see 4348279 private static final boolean dhKeyExchangeFix = Debug.getBooleanProperty("com.sun.net.ssl.dhKeyExchangeFix", true); private byte[] dh_p; // 1 to 2^16 - 1 bytes private byte[] dh_g; // 1 to 2^16 - 1 bytes private byte[] dh_Ys; // 1 to 2^16 - 1 bytes private byte[] signature; // protocol version being established using this ServerKeyExchange message ProtocolVersion protocolVersion; // the preferable signature algorithm used by this ServerKeyExchange message private SignatureAndHashAlgorithm preferableSignatureAlgorithm; /* * Construct from initialized DH key object, for DH_anon * key exchange. */ DH_ServerKeyExchange(DHCrypt obj, ProtocolVersion protocolVersion) { this.protocolVersion = protocolVersion; this.preferableSignatureAlgorithm = null; // The DH key has been validated in the constructor of DHCrypt. setValues(obj); signature = null; } /* * Construct from initialized DH key object and the key associated * with the cert chain which was sent ... for DHE_DSS and DHE_RSA * key exchange. (Constructor called by server.) */ DH_ServerKeyExchange(DHCrypt obj, PrivateKey key, byte[] clntNonce, byte[] svrNonce, SecureRandom sr, SignatureAndHashAlgorithm signAlgorithm, ProtocolVersion protocolVersion) throws GeneralSecurityException { this.protocolVersion = protocolVersion; // The DH key has been validated in the constructor of DHCrypt. setValues(obj); Signature sig; if (protocolVersion.useTLS12PlusSpec()) { this.preferableSignatureAlgorithm = signAlgorithm; sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName()); } else { this.preferableSignatureAlgorithm = null; if (key.getAlgorithm().equals("DSA")) { sig = JsseJce.getSignature(JsseJce.SIGNATURE_DSA); } else { sig = RSASignature.getInstance(); } } sig.initSign(key, sr); updateSignature(sig, clntNonce, svrNonce); signature = sig.sign(); } /* * Construct a DH_ServerKeyExchange message from an input * stream, as if sent from server to client for use with * DH_anon key exchange */ DH_ServerKeyExchange(HandshakeInStream input, ProtocolVersion protocolVersion) throws IOException, GeneralSecurityException { this.protocolVersion = protocolVersion; this.preferableSignatureAlgorithm = null; dh_p = input.getBytes16(); dh_g = input.getBytes16(); dh_Ys = input.getBytes16(); KeyUtil.validate(new DHPublicKeySpec(new BigInteger(1, dh_Ys), new BigInteger(1, dh_p), new BigInteger(1, dh_g))); signature = null; } /* * Construct a DH_ServerKeyExchange message from an input stream * and a certificate, as if sent from server to client for use with * DHE_DSS or DHE_RSA key exchange. (Called by client.) */ DH_ServerKeyExchange(HandshakeInStream input, PublicKey publicKey, byte[] clntNonce, byte[] svrNonce, int messageSize, Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs, ProtocolVersion protocolVersion) throws IOException, GeneralSecurityException { this.protocolVersion = protocolVersion; // read params: ServerDHParams dh_p = input.getBytes16(); dh_g = input.getBytes16(); dh_Ys = input.getBytes16(); KeyUtil.validate(new DHPublicKeySpec(new BigInteger(1, dh_Ys), new BigInteger(1, dh_p), new BigInteger(1, dh_g))); // read the signature and hash algorithm if (protocolVersion.useTLS12PlusSpec()) { int hash = input.getInt8(); // hash algorithm int signature = input.getInt8(); // signature algorithm preferableSignatureAlgorithm = SignatureAndHashAlgorithm.valueOf(hash, signature, 0); // Is it a local supported signature algorithm? if (!localSupportedSignAlgs.contains( preferableSignatureAlgorithm)) { throw new SSLHandshakeException( "Unsupported SignatureAndHashAlgorithm in " + "ServerKeyExchange message: " + preferableSignatureAlgorithm); } } else { this.preferableSignatureAlgorithm = null; } // read the signature byte[] signature; if (dhKeyExchangeFix) { signature = input.getBytes16(); } else { messageSize -= (dh_p.length + 2); messageSize -= (dh_g.length + 2); messageSize -= (dh_Ys.length + 2); signature = new byte[messageSize]; input.read(signature); } Signature sig; String algorithm = publicKey.getAlgorithm(); if (protocolVersion.useTLS12PlusSpec()) { sig = JsseJce.getSignature( preferableSignatureAlgorithm.getAlgorithmName()); } else { switch (algorithm) { case "DSA": sig = JsseJce.getSignature(JsseJce.SIGNATURE_DSA); break; case "RSA": sig = RSASignature.getInstance(); break; default: throw new SSLKeyException( "neither an RSA or a DSA key: " + algorithm); } } sig.initVerify(publicKey); updateSignature(sig, clntNonce, svrNonce); if (sig.verify(signature) == false ) { throw new SSLKeyException("Server D-H key verification failed"); } } /* Return the Diffie-Hellman modulus */ BigInteger getModulus() { return new BigInteger(1, dh_p); } /* Return the Diffie-Hellman base/generator */ BigInteger getBase() { return new BigInteger(1, dh_g); } /* Return the server's Diffie-Hellman public key */ BigInteger getServerPublicKey() { return new BigInteger(1, dh_Ys); } /* * Update sig with nonces and Diffie-Hellman public key. */ private void updateSignature(Signature sig, byte[] clntNonce, byte[] svrNonce) throws SignatureException { int tmp; sig.update(clntNonce); sig.update(svrNonce); tmp = dh_p.length; sig.update((byte)(tmp >> 8)); sig.update((byte)(tmp & 0x0ff)); sig.update(dh_p); tmp = dh_g.length; sig.update((byte)(tmp >> 8)); sig.update((byte)(tmp & 0x0ff)); sig.update(dh_g); tmp = dh_Ys.length; sig.update((byte)(tmp >> 8)); sig.update((byte)(tmp & 0x0ff)); sig.update(dh_Ys); } private void setValues(DHCrypt obj) { dh_p = toByteArray(obj.getModulus()); dh_g = toByteArray(obj.getBase()); dh_Ys = toByteArray(obj.getPublicKey()); } @Override int messageLength() { int temp = 6; // overhead for p, g, y(s) values. temp += dh_p.length; temp += dh_g.length; temp += dh_Ys.length; if (signature != null) { if (protocolVersion.useTLS12PlusSpec()) { temp += SignatureAndHashAlgorithm.sizeInRecord(); } temp += signature.length; if (dhKeyExchangeFix) { temp += 2; } } return temp; } @Override void send(HandshakeOutStream s) throws IOException { s.putBytes16(dh_p); s.putBytes16(dh_g); s.putBytes16(dh_Ys); if (signature != null) { if (protocolVersion.useTLS12PlusSpec()) { s.putInt8(preferableSignatureAlgorithm.getHashValue()); s.putInt8(preferableSignatureAlgorithm.getSignatureValue()); } if (dhKeyExchangeFix) { s.putBytes16(signature); } else { s.write(signature); } } } @Override void print(PrintStream s) throws IOException { s.println("*** Diffie-Hellman ServerKeyExchange"); if (debug != null && Debug.isOn("verbose")) { Debug.println(s, "DH Modulus", dh_p); Debug.println(s, "DH Base", dh_g); Debug.println(s, "Server DH Public Key", dh_Ys); if (signature == null) { s.println("Anonymous"); } else { if (protocolVersion.useTLS12PlusSpec()) { s.println("Signature Algorithm " + preferableSignatureAlgorithm.getAlgorithmName()); } s.println("Signed with a DSA or RSA public key"); } } } } /* * ECDH server key exchange message. Sent by the server for ECDHE and ECDH_anon * ciphersuites to communicate its ephemeral public key (including the * EC domain parameters). * * We support named curves only, no explicitly encoded curves. */ static final class ECDH_ServerKeyExchange extends ServerKeyExchange { // constants for ECCurveType private static final int CURVE_EXPLICIT_PRIME = 1; private static final int CURVE_EXPLICIT_CHAR2 = 2; private static final int CURVE_NAMED_CURVE = 3; // id of the named group we are using private int groupId; // encoded public point private byte[] pointBytes; // signature bytes (or null if anonymous) private byte[] signatureBytes; // public key object encapsulated in this message private ECPublicKey publicKey; // protocol version being established using this ServerKeyExchange message ProtocolVersion protocolVersion; // the preferable signature algorithm used by this ServerKeyExchange message private SignatureAndHashAlgorithm preferableSignatureAlgorithm; ECDH_ServerKeyExchange(ECDHCrypt obj, PrivateKey privateKey, byte[] clntNonce, byte[] svrNonce, SecureRandom sr, SignatureAndHashAlgorithm signAlgorithm, ProtocolVersion protocolVersion) throws SSLHandshakeException, GeneralSecurityException { this.protocolVersion = protocolVersion; publicKey = (ECPublicKey)obj.getPublicKey(); ECParameterSpec params = publicKey.getParams(); ECPoint point = publicKey.getW(); pointBytes = JsseJce.encodePoint(point, params.getCurve()); NamedGroup namedGroup = NamedGroup.valueOf(params); if ((namedGroup == null) || (namedGroup.oid == null) ){ // unlikely throw new SSLHandshakeException( "Unnamed EC parameter spec: " + params); } groupId = namedGroup.id; if (privateKey == null) { // ECDH_anon return; } Signature sig; if (protocolVersion.useTLS12PlusSpec()) { this.preferableSignatureAlgorithm = signAlgorithm; sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName()); } else { sig = getSignature(privateKey.getAlgorithm()); } sig.initSign(privateKey, sr); updateSignature(sig, clntNonce, svrNonce); signatureBytes = sig.sign(); } /* * Parse an ECDH server key exchange message. */ ECDH_ServerKeyExchange(HandshakeInStream input, PublicKey signingKey, byte[] clntNonce, byte[] svrNonce, Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs, ProtocolVersion protocolVersion) throws IOException, GeneralSecurityException { this.protocolVersion = protocolVersion; // read params: ServerECDHParams int curveType = input.getInt8(); ECParameterSpec parameters; // These parsing errors should never occur as we negotiated // the supported curves during the exchange of the Hello messages. if (curveType == CURVE_NAMED_CURVE) { groupId = input.getInt16(); NamedGroup namedGroup = NamedGroup.valueOf(groupId); if (namedGroup == null) { throw new SSLHandshakeException( "Unknown named group ID: " + groupId); } if (!SupportedGroupsExtension.supports(namedGroup)) { throw new SSLHandshakeException( "Unsupported named group: " + namedGroup); } if (namedGroup.oid == null) { throw new SSLHandshakeException( "Unknown named EC curve: " + namedGroup); } parameters = JsseJce.getECParameterSpec(namedGroup.oid); if (parameters == null) { throw new SSLHandshakeException( "No supported EC parameter for named group: " + namedGroup); } } else { throw new SSLHandshakeException( "Unsupported ECCurveType: " + curveType); } pointBytes = input.getBytes8(); ECPoint point = JsseJce.decodePoint(pointBytes, parameters.getCurve()); KeyFactory factory = JsseJce.getKeyFactory("EC"); publicKey = (ECPublicKey)factory.generatePublic( new ECPublicKeySpec(point, parameters)); if (signingKey == null) { // ECDH_anon return; } // read the signature and hash algorithm if (protocolVersion.useTLS12PlusSpec()) { int hash = input.getInt8(); // hash algorithm int signature = input.getInt8(); // signature algorithm preferableSignatureAlgorithm = SignatureAndHashAlgorithm.valueOf(hash, signature, 0); // Is it a local supported signature algorithm? if (!localSupportedSignAlgs.contains( preferableSignatureAlgorithm)) { throw new SSLHandshakeException( "Unsupported SignatureAndHashAlgorithm in " + "ServerKeyExchange message: " + preferableSignatureAlgorithm); } } // read the signature signatureBytes = input.getBytes16(); // verify the signature Signature sig; if (protocolVersion.useTLS12PlusSpec()) { sig = JsseJce.getSignature( preferableSignatureAlgorithm.getAlgorithmName()); } else { sig = getSignature(signingKey.getAlgorithm()); } sig.initVerify(signingKey); updateSignature(sig, clntNonce, svrNonce); if (sig.verify(signatureBytes) == false ) { throw new SSLKeyException( "Invalid signature on ECDH server key exchange message"); } } /* * Get the ephemeral EC public key encapsulated in this message. */ ECPublicKey getPublicKey() { return publicKey; } private static Signature getSignature(String keyAlgorithm) throws NoSuchAlgorithmException { switch (keyAlgorithm) { case "EC": return JsseJce.getSignature(JsseJce.SIGNATURE_ECDSA); case "RSA": return RSASignature.getInstance(); default: throw new NoSuchAlgorithmException( "neither an RSA or a EC key : " + keyAlgorithm); } } private void updateSignature(Signature sig, byte[] clntNonce, byte[] svrNonce) throws SignatureException { sig.update(clntNonce); sig.update(svrNonce); sig.update((byte)CURVE_NAMED_CURVE); sig.update((byte)(groupId >> 8)); sig.update((byte)groupId); sig.update((byte)pointBytes.length); sig.update(pointBytes); } @Override int messageLength() { int sigLen = 0; if (signatureBytes != null) { sigLen = 2 + signatureBytes.length; if (protocolVersion.useTLS12PlusSpec()) { sigLen += SignatureAndHashAlgorithm.sizeInRecord(); } } return 4 + pointBytes.length + sigLen; } @Override void send(HandshakeOutStream s) throws IOException { s.putInt8(CURVE_NAMED_CURVE); s.putInt16(groupId); s.putBytes8(pointBytes); if (signatureBytes != null) { if (protocolVersion.useTLS12PlusSpec()) { s.putInt8(preferableSignatureAlgorithm.getHashValue()); s.putInt8(preferableSignatureAlgorithm.getSignatureValue()); } s.putBytes16(signatureBytes); } } @Override void print(PrintStream s) throws IOException { s.println("*** ECDH ServerKeyExchange"); if (debug != null && Debug.isOn("verbose")) { if (signatureBytes == null) { s.println("Anonymous"); } else { if (protocolVersion.useTLS12PlusSpec()) { s.println("Signature Algorithm " + preferableSignatureAlgorithm.getAlgorithmName()); } } s.println("Server key: " + publicKey); } } } static final class DistinguishedName { /* * DER encoded distinguished name. * TLS requires that its not longer than 65535 bytes. */ byte[] name; DistinguishedName(HandshakeInStream input) throws IOException { name = input.getBytes16(); } DistinguishedName(X500Principal dn) { name = dn.getEncoded(); } X500Principal getX500Principal() throws IOException { try { return new X500Principal(name); } catch (IllegalArgumentException e) { throw (SSLProtocolException)new SSLProtocolException( e.getMessage()).initCause(e); } } int length() { return 2 + name.length; } void send(HandshakeOutStream output) throws IOException { output.putBytes16(name); } void print(PrintStream output) throws IOException { X500Principal principal = new X500Principal(name); output.println("<" + principal.toString() + ">"); } } /* * CertificateRequest ... SERVER --> CLIENT * * Authenticated servers may ask clients to authenticate themselves * in turn, using this message. * * Prior to TLS 1.2, the structure of the message is defined as: * struct { * ClientCertificateType certificate_types<1..2^8-1>; * DistinguishedName certificate_authorities<0..2^16-1>; * } CertificateRequest; * * In TLS 1.2, the structure is changed to: * struct { * ClientCertificateType certificate_types<1..2^8-1>; * SignatureAndHashAlgorithm * supported_signature_algorithms<2^16-1>; * DistinguishedName certificate_authorities<0..2^16-1>; * } CertificateRequest; * */ static final class CertificateRequest extends HandshakeMessage { // enum ClientCertificateType static final int cct_rsa_sign = 1; static final int cct_dss_sign = 2; static final int cct_rsa_fixed_dh = 3; static final int cct_dss_fixed_dh = 4; // The existance of these two values is a bug in the SSL specification. // They are never used in the protocol. static final int cct_rsa_ephemeral_dh = 5; static final int cct_dss_ephemeral_dh = 6; // From RFC 4492 (ECC) static final int cct_ecdsa_sign = 64; static final int cct_rsa_fixed_ecdh = 65; static final int cct_ecdsa_fixed_ecdh = 66; private static final byte[] TYPES_NO_ECC = { cct_rsa_sign, cct_dss_sign }; private static final byte[] TYPES_ECC = { cct_rsa_sign, cct_dss_sign, cct_ecdsa_sign }; byte[] types; // 1 to 255 types DistinguishedName[] authorities; // 3 to 2^16 - 1 // ... "3" because that's the smallest DER-encoded X500 DN // protocol version being established using this CertificateRequest message ProtocolVersion protocolVersion; // supported_signature_algorithms for TLS 1.2 or later private Collection<SignatureAndHashAlgorithm> algorithms; // length of supported_signature_algorithms private int algorithmsLen; CertificateRequest(X509Certificate[] ca, KeyExchange keyExchange, Collection<SignatureAndHashAlgorithm> signAlgs, ProtocolVersion protocolVersion) throws IOException { this.protocolVersion = protocolVersion; // always use X500Principal authorities = new DistinguishedName[ca.length]; for (int i = 0; i < ca.length; i++) { X500Principal x500Principal = ca[i].getSubjectX500Principal(); authorities[i] = new DistinguishedName(x500Principal); } // we support RSA, DSS, and ECDSA client authentication and they // can be used with all ciphersuites. If this changes, the code // needs to be adapted to take keyExchange into account. // We only request ECDSA client auth if we have ECC crypto available. this.types = JsseJce.isEcAvailable() ? TYPES_ECC : TYPES_NO_ECC; // Use supported_signature_algorithms for TLS 1.2 or later. if (protocolVersion.useTLS12PlusSpec()) { if (signAlgs == null || signAlgs.isEmpty()) { throw new SSLProtocolException( "No supported signature algorithms"); } algorithms = new ArrayList<SignatureAndHashAlgorithm>(signAlgs); algorithmsLen = SignatureAndHashAlgorithm.sizeInRecord() * algorithms.size(); } else { algorithms = new ArrayList<SignatureAndHashAlgorithm>(); algorithmsLen = 0; } } CertificateRequest(HandshakeInStream input, ProtocolVersion protocolVersion) throws IOException { this.protocolVersion = protocolVersion; // Read the certificate_types. types = input.getBytes8(); // Read the supported_signature_algorithms for TLS 1.2 or later. if (protocolVersion.useTLS12PlusSpec()) { algorithmsLen = input.getInt16(); if (algorithmsLen < 2) { throw new SSLProtocolException( "Invalid supported_signature_algorithms field: " + algorithmsLen); } algorithms = new ArrayList<SignatureAndHashAlgorithm>(); int remains = algorithmsLen; int sequence = 0; while (remains > 1) { // needs at least two bytes int hash = input.getInt8(); // hash algorithm int signature = input.getInt8(); // signature algorithm SignatureAndHashAlgorithm algorithm = SignatureAndHashAlgorithm.valueOf(hash, signature, ++sequence); algorithms.add(algorithm); remains -= 2; // one byte for hash, one byte for signature } if (remains != 0) { throw new SSLProtocolException( "Invalid supported_signature_algorithms field. remains: " + remains); } } else { algorithms = new ArrayList<SignatureAndHashAlgorithm>(); algorithmsLen = 0; } // read the certificate_authorities int len = input.getInt16(); ArrayList<DistinguishedName> v = new ArrayList<>(); while (len >= 3) { DistinguishedName dn = new DistinguishedName(input); v.add(dn); len -= dn.length(); } if (len != 0) { throw new SSLProtocolException( "Bad CertificateRequest DN length: " + len); } authorities = v.toArray(new DistinguishedName[v.size()]); } X500Principal[] getAuthorities() throws IOException { X500Principal[] ret = new X500Principal[authorities.length]; for (int i = 0; i < authorities.length; i++) { ret[i] = authorities[i].getX500Principal(); } return ret; } Collection<SignatureAndHashAlgorithm> getSignAlgorithms() { return algorithms; } @Override int messageType() { return ht_certificate_request; } @Override int messageLength() { int len = 1 + types.length + 2; if (protocolVersion.useTLS12PlusSpec()) { len += algorithmsLen + 2; } for (int i = 0; i < authorities.length; i++) { len += authorities[i].length(); } return len; } @Override void send(HandshakeOutStream output) throws IOException { // put certificate_types output.putBytes8(types); // put supported_signature_algorithms if (protocolVersion.useTLS12PlusSpec()) { output.putInt16(algorithmsLen); for (SignatureAndHashAlgorithm algorithm : algorithms) { output.putInt8(algorithm.getHashValue()); // hash output.putInt8(algorithm.getSignatureValue()); // signature } } // put certificate_authorities int len = 0; for (int i = 0; i < authorities.length; i++) { len += authorities[i].length(); } output.putInt16(len); for (int i = 0; i < authorities.length; i++) { authorities[i].send(output); } } @Override void print(PrintStream s) throws IOException { s.println("*** CertificateRequest"); if (debug != null && Debug.isOn("verbose")) { s.print("Cert Types: "); for (int i = 0; i < types.length; i++) { switch (types[i]) { case cct_rsa_sign: s.print("RSA"); break; case cct_dss_sign: s.print("DSS"); break; case cct_rsa_fixed_dh: s.print("Fixed DH (RSA sig)"); break; case cct_dss_fixed_dh: s.print("Fixed DH (DSS sig)"); break; case cct_rsa_ephemeral_dh: s.print("Ephemeral DH (RSA sig)"); break; case cct_dss_ephemeral_dh: s.print("Ephemeral DH (DSS sig)"); break; case cct_ecdsa_sign: s.print("ECDSA"); break; case cct_rsa_fixed_ecdh: s.print("Fixed ECDH (RSA sig)"); break; case cct_ecdsa_fixed_ecdh: s.print("Fixed ECDH (ECDSA sig)"); break; default: s.print("Type-" + (types[i] & 0xff)); break; } if (i != types.length - 1) { s.print(", "); } } s.println(); if (protocolVersion.useTLS12PlusSpec()) { StringBuilder sb = new StringBuilder(); boolean opened = false; for (SignatureAndHashAlgorithm signAlg : algorithms) { if (opened) { sb.append(", ").append(signAlg.getAlgorithmName()); } else { sb.append(signAlg.getAlgorithmName()); opened = true; } } s.println("Supported Signature Algorithms: " + sb); } s.println("Cert Authorities:"); if (authorities.length == 0) { s.println("<Empty>"); } else { for (int i = 0; i < authorities.length; i++) { authorities[i].print(s); } } } } } /* * ServerHelloDone ... SERVER --> CLIENT * * When server's done sending its messages in response to the client's * "hello" (e.g. its own hello, certificate, key exchange message, perhaps * client certificate request) it sends this message to flag that it's * done that part of the handshake. */ static final class ServerHelloDone extends HandshakeMessage { @Override int messageType() { return ht_server_hello_done; } ServerHelloDone() { } ServerHelloDone(HandshakeInStream input) { // nothing to do } @Override int messageLength() { return 0; } @Override void send(HandshakeOutStream s) throws IOException { // nothing to send } @Override void print(PrintStream s) throws IOException { s.println("*** ServerHelloDone"); } } /* * CertificateVerify ... CLIENT --> SERVER * * Sent after client sends signature-capable certificates (e.g. not * Diffie-Hellman) to verify. */ static final class CertificateVerify extends HandshakeMessage { // the signature bytes private byte[] signature; // protocol version being established using this CertificateVerify message ProtocolVersion protocolVersion; // the preferable signature algorithm used by this CertificateVerify message private SignatureAndHashAlgorithm preferableSignatureAlgorithm = null; /* * Create an RSA or DSA signed certificate verify message. */ CertificateVerify(ProtocolVersion protocolVersion, HandshakeHash handshakeHash, PrivateKey privateKey, SecretKey masterSecret, SecureRandom sr, SignatureAndHashAlgorithm signAlgorithm) throws GeneralSecurityException { this.protocolVersion = protocolVersion; String algorithm = privateKey.getAlgorithm(); Signature sig = null; if (protocolVersion.useTLS12PlusSpec()) { this.preferableSignatureAlgorithm = signAlgorithm; sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName()); } else { sig = getSignature(protocolVersion, algorithm); } sig.initSign(privateKey, sr); updateSignature(sig, protocolVersion, handshakeHash, algorithm, masterSecret); signature = sig.sign(); } // // Unmarshal the signed data from the input stream. // CertificateVerify(HandshakeInStream input, Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs, ProtocolVersion protocolVersion) throws IOException { this.protocolVersion = protocolVersion; // read the signature and hash algorithm if (protocolVersion.useTLS12PlusSpec()) { int hashAlg = input.getInt8(); // hash algorithm int signAlg = input.getInt8(); // signature algorithm preferableSignatureAlgorithm = SignatureAndHashAlgorithm.valueOf(hashAlg, signAlg, 0); // Is it a local supported signature algorithm? if (!localSupportedSignAlgs.contains( preferableSignatureAlgorithm)) { throw new SSLHandshakeException( "Unsupported SignatureAndHashAlgorithm in " + "CertificateVerify message: " + preferableSignatureAlgorithm); } } // read the signature signature = input.getBytes16(); } /* * Get the preferable signature algorithm used by this message */ SignatureAndHashAlgorithm getPreferableSignatureAlgorithm() { return preferableSignatureAlgorithm; } /* * Verify a certificate verify message. Return the result of verification, * if there is a problem throw a GeneralSecurityException. */ boolean verify(ProtocolVersion protocolVersion, HandshakeHash handshakeHash, PublicKey publicKey, SecretKey masterSecret) throws GeneralSecurityException { String algorithm = publicKey.getAlgorithm(); Signature sig = null; if (protocolVersion.useTLS12PlusSpec()) { sig = JsseJce.getSignature( preferableSignatureAlgorithm.getAlgorithmName()); } else { sig = getSignature(protocolVersion, algorithm); } sig.initVerify(publicKey); updateSignature(sig, protocolVersion, handshakeHash, algorithm, masterSecret); return sig.verify(signature); } /* * Get the Signature object appropriate for verification using the * given signature algorithm and protocol version. */ private static Signature getSignature(ProtocolVersion protocolVersion, String algorithm) throws GeneralSecurityException { switch (algorithm) { case "RSA": return RSASignature.getInternalInstance(); case "DSA": return JsseJce.getSignature(JsseJce.SIGNATURE_RAWDSA); case "EC": return JsseJce.getSignature(JsseJce.SIGNATURE_RAWECDSA); default: throw new SignatureException("Unrecognized algorithm: " + algorithm); } } /* * Update the Signature with the data appropriate for the given * signature algorithm and protocol version so that the object is * ready for signing or verifying. */ private static void updateSignature(Signature sig, ProtocolVersion protocolVersion, HandshakeHash handshakeHash, String algorithm, SecretKey masterKey) throws SignatureException { if (algorithm.equals("RSA")) { if (!protocolVersion.useTLS12PlusSpec()) { // TLS1.1- MessageDigest md5Clone = handshakeHash.getMD5Clone(); MessageDigest shaClone = handshakeHash.getSHAClone(); if (!protocolVersion.useTLS10PlusSpec()) { // SSLv3 updateDigest(md5Clone, MD5_pad1, MD5_pad2, masterKey); updateDigest(shaClone, SHA_pad1, SHA_pad2, masterKey); } // The signature must be an instance of RSASignature, need // to use these hashes directly. RSASignature.setHashes(sig, md5Clone, shaClone); } else { // TLS1.2+ sig.update(handshakeHash.getAllHandshakeMessages()); } } else { // DSA, ECDSA if (!protocolVersion.useTLS12PlusSpec()) { // TLS1.1- MessageDigest shaClone = handshakeHash.getSHAClone(); if (!protocolVersion.useTLS10PlusSpec()) { // SSLv3 updateDigest(shaClone, SHA_pad1, SHA_pad2, masterKey); } sig.update(shaClone.digest()); } else { // TLS1.2+ sig.update(handshakeHash.getAllHandshakeMessages()); } } } /* * Update the MessageDigest for SSLv3 certificate verify or finished * message calculation. The digest must already have been updated with * all preceding handshake messages. * Used by the Finished class as well. */ private static void updateDigest(MessageDigest md, byte[] pad1, byte[] pad2, SecretKey masterSecret) { // Digest the key bytes if available. // Otherwise (sensitive key), try digesting the key directly. // That is currently only implemented in SunPKCS11 using a private // reflection API, so we avoid that if possible. byte[] keyBytes = "RAW".equals(masterSecret.getFormat()) ? masterSecret.getEncoded() : null; if (keyBytes != null) { md.update(keyBytes); } else { digestKey(md, masterSecret); } md.update(pad1); byte[] temp = md.digest(); if (keyBytes != null) { md.update(keyBytes); } else { digestKey(md, masterSecret); } md.update(pad2); md.update(temp); } private static void digestKey(MessageDigest md, SecretKey key) { try { if (md instanceof MessageDigestSpi2) { ((MessageDigestSpi2)md).engineUpdate(key); } else { throw new Exception( "Digest does not support implUpdate(SecretKey)"); } } catch (Exception e) { throw new RuntimeException( "Could not obtain encoded key and " + "MessageDigest cannot digest key", e); } } @Override int messageType() { return ht_certificate_verify; } @Override int messageLength() { int temp = 2; if (protocolVersion.useTLS12PlusSpec()) { temp += SignatureAndHashAlgorithm.sizeInRecord(); } return temp + signature.length; } @Override void send(HandshakeOutStream s) throws IOException { if (protocolVersion.useTLS12PlusSpec()) { s.putInt8(preferableSignatureAlgorithm.getHashValue()); s.putInt8(preferableSignatureAlgorithm.getSignatureValue()); } s.putBytes16(signature); } @Override void print(PrintStream s) throws IOException { s.println("*** CertificateVerify"); if (debug != null && Debug.isOn("verbose")) { if (protocolVersion.useTLS12PlusSpec()) { s.println("Signature Algorithm " + preferableSignatureAlgorithm.getAlgorithmName()); } } } } /* * FINISHED ... sent by both CLIENT and SERVER * * This is the FINISHED message as defined in the SSL and TLS protocols. * Both protocols define this handshake message slightly differently. * This class supports both formats. * * When handshaking is finished, each side sends a "change_cipher_spec" * record, then immediately sends a "finished" handshake message prepared * according to the newly adopted cipher spec. * * NOTE that until this is sent, no application data may be passed, unless * some non-default cipher suite has already been set up on this connection * connection (e.g. a previous handshake arranged one). */ static final class Finished extends HandshakeMessage { // constant for a Finished message sent by the client static final int CLIENT = 1; // constant for a Finished message sent by the server static final int SERVER = 2; // enum Sender: "CLNT" and "SRVR" private static final byte[] SSL_CLIENT = { 0x43, 0x4C, 0x4E, 0x54 }; private static final byte[] SSL_SERVER = { 0x53, 0x52, 0x56, 0x52 }; /* * Contents of the finished message ("checksum"). For TLS, it * is 12 bytes long, for SSLv3 36 bytes. */ private byte[] verifyData; /* * Current cipher suite we are negotiating. TLS 1.2 has * ciphersuite-defined PRF algorithms. */ private ProtocolVersion protocolVersion; private CipherSuite cipherSuite; /* * Create a finished message to send to the remote peer. */ Finished(ProtocolVersion protocolVersion, HandshakeHash handshakeHash, int sender, SecretKey master, CipherSuite cipherSuite) { this.protocolVersion = protocolVersion; this.cipherSuite = cipherSuite; verifyData = getFinished(handshakeHash, sender, master); } /* * Constructor that reads FINISHED message from stream. */ Finished(ProtocolVersion protocolVersion, HandshakeInStream input, CipherSuite cipherSuite) throws IOException { this.protocolVersion = protocolVersion; this.cipherSuite = cipherSuite; int msgLen = protocolVersion.useTLS10PlusSpec() ? 12 : 36; verifyData = new byte[msgLen]; input.read(verifyData); } /* * Verify that the hashes here are what would have been produced * according to a given set of inputs. This is used to ensure that * both client and server are fully in sync, and that the handshake * computations have been successful. */ boolean verify(HandshakeHash handshakeHash, int sender, SecretKey master) { byte[] myFinished = getFinished(handshakeHash, sender, master); return MessageDigest.isEqual(myFinished, verifyData); } /* * Perform the actual finished message calculation. */ private byte[] getFinished(HandshakeHash handshakeHash, int sender, SecretKey masterKey) { byte[] sslLabel; String tlsLabel; if (sender == CLIENT) { sslLabel = SSL_CLIENT; tlsLabel = "client finished"; } else if (sender == SERVER) { sslLabel = SSL_SERVER; tlsLabel = "server finished"; } else { throw new RuntimeException("Invalid sender: " + sender); } if (protocolVersion.useTLS10PlusSpec()) { // TLS 1.0+ try { byte[] seed; String prfAlg; PRF prf; // Get the KeyGenerator alg and calculate the seed. if (protocolVersion.useTLS12PlusSpec()) { // TLS 1.2+ or DTLS 1.2+ seed = handshakeHash.getFinishedHash(); prfAlg = "SunTls12Prf"; prf = cipherSuite.prfAlg; } else { // TLS 1.0/1.1, DTLS 1.0 MessageDigest md5Clone = handshakeHash.getMD5Clone(); MessageDigest shaClone = handshakeHash.getSHAClone(); seed = new byte[36]; md5Clone.digest(seed, 0, 16); shaClone.digest(seed, 16, 20); prfAlg = "SunTlsPrf"; prf = P_NONE; } String prfHashAlg = prf.getPRFHashAlg(); int prfHashLength = prf.getPRFHashLength(); int prfBlockSize = prf.getPRFBlockSize(); /* * RFC 5246/7.4.9 says that finished messages can * be ciphersuite-specific in both length/PRF hash * algorithm. If we ever run across a different * length, this call will need to be updated. */ @SuppressWarnings("deprecation") TlsPrfParameterSpec spec = new TlsPrfParameterSpec( masterKey, tlsLabel, seed, 12, prfHashAlg, prfHashLength, prfBlockSize); KeyGenerator kg = JsseJce.getKeyGenerator(prfAlg); kg.init(spec); SecretKey prfKey = kg.generateKey(); if ("RAW".equals(prfKey.getFormat()) == false) { throw new ProviderException( "Invalid PRF output, format must be RAW. " + "Format received: " + prfKey.getFormat()); } byte[] finished = prfKey.getEncoded(); return finished; } catch (GeneralSecurityException e) { throw new RuntimeException("PRF failed", e); } } else { // SSLv3 MessageDigest md5Clone = handshakeHash.getMD5Clone(); MessageDigest shaClone = handshakeHash.getSHAClone(); updateDigest(md5Clone, sslLabel, MD5_pad1, MD5_pad2, masterKey); updateDigest(shaClone, sslLabel, SHA_pad1, SHA_pad2, masterKey); byte[] finished = new byte[36]; try { md5Clone.digest(finished, 0, 16); shaClone.digest(finished, 16, 20); } catch (DigestException e) { // cannot occur throw new RuntimeException("Digest failed", e); } return finished; } } /* * Update the MessageDigest for SSLv3 finished message calculation. * The digest must already have been updated with all preceding handshake * messages. This operation is almost identical to the certificate verify * hash, reuse that code. */ private static void updateDigest(MessageDigest md, byte[] sender, byte[] pad1, byte[] pad2, SecretKey masterSecret) { md.update(sender); CertificateVerify.updateDigest(md, pad1, pad2, masterSecret); } // get the verify_data of the finished message byte[] getVerifyData() { return verifyData; } @Override int messageType() { return ht_finished; } @Override int messageLength() { return verifyData.length; } @Override void send(HandshakeOutStream out) throws IOException { out.write(verifyData); } @Override void print(PrintStream s) throws IOException { s.println("*** Finished"); if (debug != null && Debug.isOn("verbose")) { Debug.println(s, "verify_data", verifyData); s.println("***"); } } } // // END of nested classes // }