Showing changes in java/12/java.base/java/lang/Float.java (new version) from java/8/java/lang/Float.java (old version). +89 -36
 /*
- * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
  * under the terms of the GNU General Public License version 2 only, as
  * published by the Free Software Foundation.  Oracle designates this
  * particular file as subject to the "Classpath" exception as provided
  * by Oracle in the LICENSE file that accompanied this code.
  *
  * This code is distributed in the hope that it will be useful, but WITHOUT
  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  * version 2 for more details (a copy is included in the LICENSE file that
  * accompanied this code).
  *
  * You should have received a copy of the GNU General Public License version
  * 2 along with this work; if not, write to the Free Software Foundation,
  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  *
  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  * or visit www.oracle.com if you need additional information or have any
  * questions.
  */
 
 package java.lang;
 
-import sun.misc.FloatingDecimal;
-import sun.misc.FloatConsts;
-import sun.misc.DoubleConsts;
+import java.lang.invoke.MethodHandles;
+import java.lang.constant.Constable;
+import java.lang.constant.ConstantDesc;
+import java.util.Optional;
+
+import jdk.internal.math.FloatingDecimal;
+import jdk.internal.HotSpotIntrinsicCandidate;
 
 /**
  * The {@code Float} class wraps a value of primitive type
  * {@code float} in an object. An object of type
  * {@code Float} contains a single field whose type is
  * {@code float}.
  *
  * <p>In addition, this class provides several methods for converting a
  * {@code float} to a {@code String} and a
  * {@code String} to a {@code float}, as well as other
  * constants and methods useful when dealing with a
  * {@code float}.
  *
  * @author  Lee Boynton
  * @author  Arthur van Hoff
  * @author  Joseph D. Darcy
- * @since JDK1.0
+ * @since 1.0
  */
-public final class Float extends Number implements Comparable<Float> {
+public final class Float extends Number
+        implements Comparable<Float>, Constable, ConstantDesc {
     /**
      * A constant holding the positive infinity of type
      * {@code float}. It is equal to the value returned by
      * {@code Float.intBitsToFloat(0x7f800000)}.
      */
     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
 
     /**
      * A constant holding the negative infinity of type
      * {@code float}. It is equal to the value returned by
      * {@code Float.intBitsToFloat(0xff800000)}.
      */
     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
 
     /**
      * A constant holding a Not-a-Number (NaN) value of type
      * {@code float}.  It is equivalent to the value returned by
      * {@code Float.intBitsToFloat(0x7fc00000)}.
      */
     public static final float NaN = 0.0f / 0.0f;
 
     /**
      * A constant holding the largest positive finite value of type
      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
      * It is equal to the hexadecimal floating-point literal
      * {@code 0x1.fffffeP+127f} and also equal to
      * {@code Float.intBitsToFloat(0x7f7fffff)}.
      */
     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
 
     /**
      * A constant holding the smallest positive normal value of type
      * {@code float}, 2<sup>-126</sup>.  It is equal to the
      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
      * equal to {@code Float.intBitsToFloat(0x00800000)}.
      *
      * @since 1.6
      */
     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
 
     /**
      * A constant holding the smallest positive nonzero value of type
      * {@code float}, 2<sup>-149</sup>. It is equal to the
      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
      * and also equal to {@code Float.intBitsToFloat(0x1)}.
      */
     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
 
     /**
      * Maximum exponent a finite {@code float} variable may have.  It
      * is equal to the value returned by {@code
      * Math.getExponent(Float.MAX_VALUE)}.
      *
      * @since 1.6
      */
     public static final int MAX_EXPONENT = 127;
 
     /**
      * Minimum exponent a normalized {@code float} variable may have.
      * It is equal to the value returned by {@code
      * Math.getExponent(Float.MIN_NORMAL)}.
      *
      * @since 1.6
      */
     public static final int MIN_EXPONENT = -126;
 
     /**
      * The number of bits used to represent a {@code float} value.
      *
      * @since 1.5
      */
     public static final int SIZE = 32;
 
     /**
      * The number of bytes used to represent a {@code float} value.
      *
      * @since 1.8
      */
     public static final int BYTES = SIZE / Byte.SIZE;
 
     /**
      * The {@code Class} instance representing the primitive type
      * {@code float}.
      *
-     * @since JDK1.1
+     * @since 1.1
      */
     @SuppressWarnings("unchecked")
     public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float");
 
     /**
      * Returns a string representation of the {@code float}
      * argument. All characters mentioned below are ASCII characters.
      * <ul>
      * <li>If the argument is NaN, the result is the string
      * "{@code NaN}".
      * <li>Otherwise, the result is a string that represents the sign and
      *     magnitude (absolute value) of the argument. If the sign is
      *     negative, the first character of the result is
      *     '{@code -}' ({@code '\u005Cu002D'}); if the sign is
      *     positive, no sign character appears in the result. As for
      *     the magnitude <i>m</i>:
      * <ul>
      * <li>If <i>m</i> is infinity, it is represented by the characters
      *     {@code "Infinity"}; thus, positive infinity produces
      *     the result {@code "Infinity"} and negative infinity
      *     produces the result {@code "-Infinity"}.
      * <li>If <i>m</i> is zero, it is represented by the characters
      *     {@code "0.0"}; thus, negative zero produces the result
      *     {@code "-0.0"} and positive zero produces the result
      *     {@code "0.0"}.
      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
      *      less than 10<sup>7</sup>, then it is represented as the
      *      integer part of <i>m</i>, in decimal form with no leading
      *      zeroes, followed by '{@code .}'
      *      ({@code '\u005Cu002E'}), followed by one or more
      *      decimal digits representing the fractional part of
      *      <i>m</i>.
      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
      *      equal to 10<sup>7</sup>, then it is represented in
      *      so-called "computerized scientific notation." Let <i>n</i>
      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
      *      be the mathematically exact quotient of <i>m</i> and
      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
      *      The magnitude is then represented as the integer part of
      *      <i>a</i>, as a single decimal digit, followed by
      *      '{@code .}' ({@code '\u005Cu002E'}), followed by
      *      decimal digits representing the fractional part of
      *      <i>a</i>, followed by the letter '{@code E}'
      *      ({@code '\u005Cu0045'}), followed by a representation
      *      of <i>n</i> as a decimal integer, as produced by the
      *      method {@link java.lang.Integer#toString(int)}.
      *
      * </ul>
      * </ul>
      * How many digits must be printed for the fractional part of
      * <i>m</i> or <i>a</i>? There must be at least one digit
      * to represent the fractional part, and beyond that as many, but
      * only as many, more digits as are needed to uniquely distinguish
      * the argument value from adjacent values of type
      * {@code float}. That is, suppose that <i>x</i> is the
      * exact mathematical value represented by the decimal
      * representation produced by this method for a finite nonzero
      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
      * value nearest to <i>x</i>; or, if two {@code float} values are
      * equally close to <i>x</i>, then <i>f</i> must be one of
      * them and the least significant bit of the significand of
      * <i>f</i> must be {@code 0}.
      *
      * <p>To create localized string representations of a floating-point
      * value, use subclasses of {@link java.text.NumberFormat}.
      *
      * @param   f   the float to be converted.
      * @return a string representation of the argument.
      */
     public static String toString(float f) {
         return FloatingDecimal.toJavaFormatString(f);
     }
 
     /**
      * Returns a hexadecimal string representation of the
      * {@code float} argument. All characters mentioned below are
      * ASCII characters.
      *
      * <ul>
      * <li>If the argument is NaN, the result is the string
      *     "{@code NaN}".
      * <li>Otherwise, the result is a string that represents the sign and
      * magnitude (absolute value) of the argument. If the sign is negative,
      * the first character of the result is '{@code -}'
      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
      * appears in the result. As for the magnitude <i>m</i>:
      *
      * <ul>
      * <li>If <i>m</i> is infinity, it is represented by the string
      * {@code "Infinity"}; thus, positive infinity produces the
      * result {@code "Infinity"} and negative infinity produces
      * the result {@code "-Infinity"}.
      *
      * <li>If <i>m</i> is zero, it is represented by the string
      * {@code "0x0.0p0"}; thus, negative zero produces the result
      * {@code "-0x0.0p0"} and positive zero produces the result
      * {@code "0x0.0p0"}.
      *
      * <li>If <i>m</i> is a {@code float} value with a
      * normalized representation, substrings are used to represent the
      * significand and exponent fields.  The significand is
      * represented by the characters {@code "0x1."}
      * followed by a lowercase hexadecimal representation of the rest
      * of the significand as a fraction.  Trailing zeros in the
      * hexadecimal representation are removed unless all the digits
      * are zero, in which case a single zero is used. Next, the
      * exponent is represented by {@code "p"} followed
      * by a decimal string of the unbiased exponent as if produced by
      * a call to {@link Integer#toString(int) Integer.toString} on the
      * exponent value.
      *
      * <li>If <i>m</i> is a {@code float} value with a subnormal
      * representation, the significand is represented by the
      * characters {@code "0x0."} followed by a
      * hexadecimal representation of the rest of the significand as a
      * fraction.  Trailing zeros in the hexadecimal representation are
      * removed. Next, the exponent is represented by
      * {@code "p-126"}.  Note that there must be at
      * least one nonzero digit in a subnormal significand.
      *
      * </ul>
      *
      * </ul>
      *
-     * <table border>
+     * <table class="striped">
      * <caption>Examples</caption>
-     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
-     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
-     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
-     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
-     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
-     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
-     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
-     * <tr><td>{@code Float.MAX_VALUE}</td>
+     * <thead>
+     * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
+     * </thead>
+     * <tbody>
+     * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
+     * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
+     * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
+     * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
+     * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
+     * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
+     * <tr><th scope="row">{@code Float.MAX_VALUE}</th>
      *     <td>{@code 0x1.fffffep127}</td>
-     * <tr><td>{@code Minimum Normal Value}</td>
+     * <tr><th scope="row">{@code Minimum Normal Value}</th>
      *     <td>{@code 0x1.0p-126}</td>
-     * <tr><td>{@code Maximum Subnormal Value}</td>
+     * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
      *     <td>{@code 0x0.fffffep-126}</td>
-     * <tr><td>{@code Float.MIN_VALUE}</td>
+     * <tr><th scope="row">{@code Float.MIN_VALUE}</th>
      *     <td>{@code 0x0.000002p-126}</td>
+     * </tbody>
      * </table>
      * @param   f   the {@code float} to be converted.
      * @return a hex string representation of the argument.
      * @since 1.5
      * @author Joseph D. Darcy
      */
     public static String toHexString(float f) {
-        if (Math.abs(f) < FloatConsts.MIN_NORMAL
+        if (Math.abs(f) < Float.MIN_NORMAL
             &&  f != 0.0f ) {// float subnormal
             // Adjust exponent to create subnormal double, then
             // replace subnormal double exponent with subnormal float
             // exponent
             String s = Double.toHexString(Math.scalb((double)f,
                                                      /* -1022+126 */
-                                                     DoubleConsts.MIN_EXPONENT-
-                                                     FloatConsts.MIN_EXPONENT));
+                                                     Double.MIN_EXPONENT-
+                                                     Float.MIN_EXPONENT));
             return s.replaceFirst("p-1022$", "p-126");
         }
         else // double string will be the same as float string
             return Double.toHexString(f);
     }
 
     /**
      * Returns a {@code Float} object holding the
      * {@code float} value represented by the argument string
      * {@code s}.
      *
      * <p>If {@code s} is {@code null}, then a
      * {@code NullPointerException} is thrown.
      *
      * <p>Leading and trailing whitespace characters in {@code s}
      * are ignored.  Whitespace is removed as if by the {@link
      * String#trim} method; that is, both ASCII space and control
      * characters are removed. The rest of {@code s} should
      * constitute a <i>FloatValue</i> as described by the lexical
      * syntax rules:
      *
      * <blockquote>
      * <dl>
      * <dt><i>FloatValue:</i>
      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
      * <dd><i>SignedInteger</i>
      * </dl>
      *
      * <dl>
      * <dt><i>HexFloatingPointLiteral</i>:
      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
      * </dl>
      *
      * <dl>
      * <dt><i>HexSignificand:</i>
      * <dd><i>HexNumeral</i>
      * <dd><i>HexNumeral</i> {@code .}
      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
      *     </i>{@code .}<i> HexDigits</i>
      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
      *     </i>{@code .} <i>HexDigits</i>
      * </dl>
      *
      * <dl>
      * <dt><i>BinaryExponent:</i>
      * <dd><i>BinaryExponentIndicator SignedInteger</i>
      * </dl>
      *
      * <dl>
      * <dt><i>BinaryExponentIndicator:</i>
      * <dd>{@code p}
      * <dd>{@code P}
      * </dl>
      *
      * </blockquote>
      *
      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
      * sections of
      * <cite>The Java&trade; Language Specification</cite>,
      * except that underscores are not accepted between digits.
      * If {@code s} does not have the form of
      * a <i>FloatValue</i>, then a {@code NumberFormatException}
      * is thrown. Otherwise, {@code s} is regarded as
      * representing an exact decimal value in the usual
      * "computerized scientific notation" or as an exact
      * hexadecimal value; this exact numerical value is then
      * conceptually converted to an "infinitely precise"
      * binary value that is then rounded to type {@code float}
      * by the usual round-to-nearest rule of IEEE 754 floating-point
      * arithmetic, which includes preserving the sign of a zero
      * value.
      *
      * Note that the round-to-nearest rule also implies overflow and
      * underflow behaviour; if the exact value of {@code s} is large
      * enough in magnitude (greater than or equal to ({@link
      * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2),
      * rounding to {@code float} will result in an infinity and if the
      * exact value of {@code s} is small enough in magnitude (less
      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
      * result in a zero.
      *
      * Finally, after rounding a {@code Float} object representing
      * this {@code float} value is returned.
      *
      * <p>To interpret localized string representations of a
      * floating-point value, use subclasses of {@link
      * java.text.NumberFormat}.
      *
      * <p>Note that trailing format specifiers, specifiers that
      * determine the type of a floating-point literal
      * ({@code 1.0f} is a {@code float} value;
      * {@code 1.0d} is a {@code double} value), do
      * <em>not</em> influence the results of this method.  In other
      * words, the numerical value of the input string is converted
      * directly to the target floating-point type.  In general, the
      * two-step sequence of conversions, string to {@code double}
      * followed by {@code double} to {@code float}, is
      * <em>not</em> equivalent to converting a string directly to
      * {@code float}.  For example, if first converted to an
      * intermediate {@code double} and then to
      * {@code float}, the string<br>
      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
      * results in the {@code float} value
      * {@code 1.0000002f}; if the string is converted directly to
      * {@code float}, <code>1.000000<b>1</b>f</code> results.
      *
      * <p>To avoid calling this method on an invalid string and having
      * a {@code NumberFormatException} be thrown, the documentation
      * for {@link Double#valueOf Double.valueOf} lists a regular
      * expression which can be used to screen the input.
      *
      * @param   s   the string to be parsed.
      * @return  a {@code Float} object holding the value
      *          represented by the {@code String} argument.
      * @throws  NumberFormatException  if the string does not contain a
      *          parsable number.
      */
     public static Float valueOf(String s) throws NumberFormatException {
         return new Float(parseFloat(s));
     }
 
     /**
      * Returns a {@code Float} instance representing the specified
      * {@code float} value.
      * If a new {@code Float} instance is not required, this method
      * should generally be used in preference to the constructor
      * {@link #Float(float)}, as this method is likely to yield
      * significantly better space and time performance by caching
      * frequently requested values.
      *
      * @param  f a float value.
      * @return a {@code Float} instance representing {@code f}.
      * @since  1.5
      */
+    @HotSpotIntrinsicCandidate
     public static Float valueOf(float f) {
         return new Float(f);
     }
 
     /**
      * Returns a new {@code float} initialized to the value
      * represented by the specified {@code String}, as performed
      * by the {@code valueOf} method of class {@code Float}.
      *
      * @param  s the string to be parsed.
      * @return the {@code float} value represented by the string
      *         argument.
      * @throws NullPointerException  if the string is null
      * @throws NumberFormatException if the string does not contain a
      *               parsable {@code float}.
      * @see    java.lang.Float#valueOf(String)
      * @since 1.2
      */
     public static float parseFloat(String s) throws NumberFormatException {
         return FloatingDecimal.parseFloat(s);
     }
 
     /**
      * Returns {@code true} if the specified number is a
      * Not-a-Number (NaN) value, {@code false} otherwise.
      *
      * @param   v   the value to be tested.
      * @return  {@code true} if the argument is NaN;
      *          {@code false} otherwise.
      */
     public static boolean isNaN(float v) {
         return (v != v);
     }
 
     /**
      * Returns {@code true} if the specified number is infinitely
      * large in magnitude, {@code false} otherwise.
      *
      * @param   v   the value to be tested.
      * @return  {@code true} if the argument is positive infinity or
      *          negative infinity; {@code false} otherwise.
      */
     public static boolean isInfinite(float v) {
         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
     }
 
 
     /**
      * Returns {@code true} if the argument is a finite floating-point
      * value; returns {@code false} otherwise (for NaN and infinity
      * arguments).
      *
      * @param f the {@code float} value to be tested
      * @return {@code true} if the argument is a finite
      * floating-point value, {@code false} otherwise.
      * @since 1.8
      */
      public static boolean isFinite(float f) {
-        return Math.abs(f) <= FloatConsts.MAX_VALUE;
+        return Math.abs(f) <= Float.MAX_VALUE;
     }
 
     /**
      * The value of the Float.
      *
      * @serial
      */
     private final float value;
 
     /**
      * Constructs a newly allocated {@code Float} object that
      * represents the primitive {@code float} argument.
      *
      * @param   value   the value to be represented by the {@code Float}.
+     *
+     * @deprecated
+     * It is rarely appropriate to use this constructor. The static factory
+     * {@link #valueOf(float)} is generally a better choice, as it is
+     * likely to yield significantly better space and time performance.
      */
+    @Deprecated(since="9")
     public Float(float value) {
         this.value = value;
     }
 
     /**
      * Constructs a newly allocated {@code Float} object that
      * represents the argument converted to type {@code float}.
      *
      * @param   value   the value to be represented by the {@code Float}.
+     *
+     * @deprecated
+     * It is rarely appropriate to use this constructor. Instead, use the
+     * static factory method {@link #valueOf(float)} method as follows:
+     * {@code Float.valueOf((float)value)}.
      */
+    @Deprecated(since="9")
     public Float(double value) {
         this.value = (float)value;
     }
 
     /**
      * Constructs a newly allocated {@code Float} object that
      * represents the floating-point value of type {@code float}
      * represented by the string. The string is converted to a
      * {@code float} value as if by the {@code valueOf} method.
      *
-     * @param      s   a string to be converted to a {@code Float}.
-     * @throws  NumberFormatException  if the string does not contain a
-     *               parsable number.
-     * @see        java.lang.Float#valueOf(java.lang.String)
+     * @param   s   a string to be converted to a {@code Float}.
+     * @throws      NumberFormatException if the string does not contain a
+     *              parsable number.
+     *
+     * @deprecated
+     * It is rarely appropriate to use this constructor.
+     * Use {@link #parseFloat(String)} to convert a string to a
+     * {@code float} primitive, or use {@link #valueOf(String)}
+     * to convert a string to a {@code Float} object.
      */
+    @Deprecated(since="9")
     public Float(String s) throws NumberFormatException {
         value = parseFloat(s);
     }
 
     /**
      * Returns {@code true} if this {@code Float} value is a
      * Not-a-Number (NaN), {@code false} otherwise.
      *
      * @return  {@code true} if the value represented by this object is
      *          NaN; {@code false} otherwise.
      */
     public boolean isNaN() {
         return isNaN(value);
     }
 
     /**
      * Returns {@code true} if this {@code Float} value is
      * infinitely large in magnitude, {@code false} otherwise.
      *
      * @return  {@code true} if the value represented by this object is
      *          positive infinity or negative infinity;
      *          {@code false} otherwise.
      */
     public boolean isInfinite() {
         return isInfinite(value);
     }
 
     /**
      * Returns a string representation of this {@code Float} object.
      * The primitive {@code float} value represented by this object
      * is converted to a {@code String} exactly as if by the method
      * {@code toString} of one argument.
      *
      * @return  a {@code String} representation of this object.
      * @see java.lang.Float#toString(float)
      */
     public String toString() {
         return Float.toString(value);
     }
 
     /**
      * Returns the value of this {@code Float} as a {@code byte} after
      * a narrowing primitive conversion.
      *
      * @return  the {@code float} value represented by this object
      *          converted to type {@code byte}
      * @jls 5.1.3 Narrowing Primitive Conversions
      */
     public byte byteValue() {
         return (byte)value;
     }
 
     /**
      * Returns the value of this {@code Float} as a {@code short}
      * after a narrowing primitive conversion.
      *
      * @return  the {@code float} value represented by this object
      *          converted to type {@code short}
      * @jls 5.1.3 Narrowing Primitive Conversions
-     * @since JDK1.1
+     * @since 1.1
      */
     public short shortValue() {
         return (short)value;
     }
 
     /**
      * Returns the value of this {@code Float} as an {@code int} after
      * a narrowing primitive conversion.
      *
      * @return  the {@code float} value represented by this object
      *          converted to type {@code int}
      * @jls 5.1.3 Narrowing Primitive Conversions
      */
     public int intValue() {
         return (int)value;
     }
 
     /**
      * Returns value of this {@code Float} as a {@code long} after a
      * narrowing primitive conversion.
      *
      * @return  the {@code float} value represented by this object
      *          converted to type {@code long}
      * @jls 5.1.3 Narrowing Primitive Conversions
      */
     public long longValue() {
         return (long)value;
     }
 
     /**
      * Returns the {@code float} value of this {@code Float} object.
      *
      * @return the {@code float} value represented by this object
      */
+    @HotSpotIntrinsicCandidate
     public float floatValue() {
         return value;
     }
 
     /**
      * Returns the value of this {@code Float} as a {@code double}
      * after a widening primitive conversion.
      *
      * @return the {@code float} value represented by this
      *         object converted to type {@code double}
      * @jls 5.1.2 Widening Primitive Conversions
      */
     public double doubleValue() {
         return (double)value;
     }
 
     /**
      * Returns a hash code for this {@code Float} object. The
      * result is the integer bit representation, exactly as produced
      * by the method {@link #floatToIntBits(float)}, of the primitive
      * {@code float} value represented by this {@code Float}
      * object.
      *
      * @return a hash code value for this object.
      */
     @Override
     public int hashCode() {
         return Float.hashCode(value);
     }
 
     /**
      * Returns a hash code for a {@code float} value; compatible with
      * {@code Float.hashCode()}.
      *
      * @param value the value to hash
      * @return a hash code value for a {@code float} value.
      * @since 1.8
      */
     public static int hashCode(float value) {
         return floatToIntBits(value);
     }
 
     /**
 
      * Compares this object against the specified object.  The result
      * is {@code true} if and only if the argument is not
      * {@code null} and is a {@code Float} object that
      * represents a {@code float} with the same value as the
      * {@code float} represented by this object. For this
      * purpose, two {@code float} values are considered to be the
      * same if and only if the method {@link #floatToIntBits(float)}
      * returns the identical {@code int} value when applied to
      * each.
      *
      * <p>Note that in most cases, for two instances of class
      * {@code Float}, {@code f1} and {@code f2}, the value
      * of {@code f1.equals(f2)} is {@code true} if and only if
      *
      * <blockquote><pre>
      *   f1.floatValue() == f2.floatValue()
      * </pre></blockquote>
      *
      * <p>also has the value {@code true}. However, there are two exceptions:
      * <ul>
      * <li>If {@code f1} and {@code f2} both represent
      *     {@code Float.NaN}, then the {@code equals} method returns
      *     {@code true}, even though {@code Float.NaN==Float.NaN}
      *     has the value {@code false}.
      * <li>If {@code f1} represents {@code +0.0f} while
      *     {@code f2} represents {@code -0.0f}, or vice
      *     versa, the {@code equal} test has the value
      *     {@code false}, even though {@code 0.0f==-0.0f}
      *     has the value {@code true}.
      * </ul>
      *
      * This definition allows hash tables to operate properly.
      *
      * @param obj the object to be compared
      * @return  {@code true} if the objects are the same;
      *          {@code false} otherwise.
      * @see java.lang.Float#floatToIntBits(float)
      */
     public boolean equals(Object obj) {
         return (obj instanceof Float)
                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
     }
 
     /**
      * Returns a representation of the specified floating-point value
      * according to the IEEE 754 floating-point "single format" bit
      * layout.
      *
      * <p>Bit 31 (the bit that is selected by the mask
      * {@code 0x80000000}) represents the sign of the floating-point
      * number.
      * Bits 30-23 (the bits that are selected by the mask
      * {@code 0x7f800000}) represent the exponent.
      * Bits 22-0 (the bits that are selected by the mask
      * {@code 0x007fffff}) represent the significand (sometimes called
      * the mantissa) of the floating-point number.
      *
      * <p>If the argument is positive infinity, the result is
      * {@code 0x7f800000}.
      *
      * <p>If the argument is negative infinity, the result is
      * {@code 0xff800000}.
      *
      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
      *
      * <p>In all cases, the result is an integer that, when given to the
      * {@link #intBitsToFloat(int)} method, will produce a floating-point
      * value the same as the argument to {@code floatToIntBits}
      * (except all NaN values are collapsed to a single
      * "canonical" NaN value).
      *
      * @param   value   a floating-point number.
      * @return the bits that represent the floating-point number.
      */
+    @HotSpotIntrinsicCandidate
     public static int floatToIntBits(float value) {
-        int result = floatToRawIntBits(value);
-        // Check for NaN based on values of bit fields, maximum
-        // exponent and nonzero significand.
-        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
-              FloatConsts.EXP_BIT_MASK) &&
-             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
-            result = 0x7fc00000;
-        return result;
+        if (!isNaN(value)) {
+            return floatToRawIntBits(value);
+        }
+        return 0x7fc00000;
     }
 
     /**
      * Returns a representation of the specified floating-point value
      * according to the IEEE 754 floating-point "single format" bit
      * layout, preserving Not-a-Number (NaN) values.
      *
      * <p>Bit 31 (the bit that is selected by the mask
      * {@code 0x80000000}) represents the sign of the floating-point
      * number.
      * Bits 30-23 (the bits that are selected by the mask
      * {@code 0x7f800000}) represent the exponent.
      * Bits 22-0 (the bits that are selected by the mask
      * {@code 0x007fffff}) represent the significand (sometimes called
      * the mantissa) of the floating-point number.
      *
      * <p>If the argument is positive infinity, the result is
      * {@code 0x7f800000}.
      *
      * <p>If the argument is negative infinity, the result is
      * {@code 0xff800000}.
      *
      * <p>If the argument is NaN, the result is the integer representing
      * the actual NaN value.  Unlike the {@code floatToIntBits}
      * method, {@code floatToRawIntBits} does not collapse all the
      * bit patterns encoding a NaN to a single "canonical"
      * NaN value.
      *
      * <p>In all cases, the result is an integer that, when given to the
      * {@link #intBitsToFloat(int)} method, will produce a
      * floating-point value the same as the argument to
      * {@code floatToRawIntBits}.
      *
      * @param   value   a floating-point number.
      * @return the bits that represent the floating-point number.
      * @since 1.3
      */
+    @HotSpotIntrinsicCandidate
     public static native int floatToRawIntBits(float value);
 
     /**
      * Returns the {@code float} value corresponding to a given
      * bit representation.
      * The argument is considered to be a representation of a
      * floating-point value according to the IEEE 754 floating-point
      * "single format" bit layout.
      *
      * <p>If the argument is {@code 0x7f800000}, the result is positive
      * infinity.
      *
      * <p>If the argument is {@code 0xff800000}, the result is negative
      * infinity.
      *
      * <p>If the argument is any value in the range
      * {@code 0x7f800001} through {@code 0x7fffffff} or in
      * the range {@code 0xff800001} through
      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
      * floating-point operation provided by Java can distinguish
      * between two NaN values of the same type with different bit
      * patterns.  Distinct values of NaN are only distinguishable by
      * use of the {@code Float.floatToRawIntBits} method.
      *
      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
      * values that can be computed from the argument:
      *
      * <blockquote><pre>{@code
      * int s = ((bits >> 31) == 0) ? 1 : -1;
      * int e = ((bits >> 23) & 0xff);
      * int m = (e == 0) ?
      *                 (bits & 0x7fffff) << 1 :
      *                 (bits & 0x7fffff) | 0x800000;
      * }</pre></blockquote>
      *
      * Then the floating-point result equals the value of the mathematical
      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
      *
      * <p>Note that this method may not be able to return a
      * {@code float} NaN with exactly same bit pattern as the
      * {@code int} argument.  IEEE 754 distinguishes between two
      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
      * differences between the two kinds of NaN are generally not
      * visible in Java.  Arithmetic operations on signaling NaNs turn
      * them into quiet NaNs with a different, but often similar, bit
      * pattern.  However, on some processors merely copying a
      * signaling NaN also performs that conversion.  In particular,
      * copying a signaling NaN to return it to the calling method may
      * perform this conversion.  So {@code intBitsToFloat} may
      * not be able to return a {@code float} with a signaling NaN
      * bit pattern.  Consequently, for some {@code int} values,
      * {@code floatToRawIntBits(intBitsToFloat(start))} may
      * <i>not</i> equal {@code start}.  Moreover, which
      * particular bit patterns represent signaling NaNs is platform
      * dependent; although all NaN bit patterns, quiet or signaling,
      * must be in the NaN range identified above.
      *
      * @param   bits   an integer.
      * @return  the {@code float} floating-point value with the same bit
      *          pattern.
      */
+    @HotSpotIntrinsicCandidate
     public static native float intBitsToFloat(int bits);
 
     /**
      * Compares two {@code Float} objects numerically.  There are
      * two ways in which comparisons performed by this method differ
      * from those performed by the Java language numerical comparison
      * operators ({@code <, <=, ==, >=, >}) when
      * applied to primitive {@code float} values:
      *
      * <ul><li>
      *          {@code Float.NaN} is considered by this method to
      *          be equal to itself and greater than all other
      *          {@code float} values
      *          (including {@code Float.POSITIVE_INFINITY}).
      * <li>
      *          {@code 0.0f} is considered by this method to be greater
      *          than {@code -0.0f}.
      * </ul>
      *
      * This ensures that the <i>natural ordering</i> of {@code Float}
      * objects imposed by this method is <i>consistent with equals</i>.
      *
      * @param   anotherFloat   the {@code Float} to be compared.
      * @return  the value {@code 0} if {@code anotherFloat} is
      *          numerically equal to this {@code Float}; a value
      *          less than {@code 0} if this {@code Float}
      *          is numerically less than {@code anotherFloat};
      *          and a value greater than {@code 0} if this
      *          {@code Float} is numerically greater than
      *          {@code anotherFloat}.
      *
      * @since   1.2
      * @see Comparable#compareTo(Object)
      */
     public int compareTo(Float anotherFloat) {
         return Float.compare(value, anotherFloat.value);
     }
 
     /**
      * Compares the two specified {@code float} values. The sign
      * of the integer value returned is the same as that of the
      * integer that would be returned by the call:
      * <pre>
      *    new Float(f1).compareTo(new Float(f2))
      * </pre>
      *
      * @param   f1        the first {@code float} to compare.
      * @param   f2        the second {@code float} to compare.
      * @return  the value {@code 0} if {@code f1} is
      *          numerically equal to {@code f2}; a value less than
      *          {@code 0} if {@code f1} is numerically less than
      *          {@code f2}; and a value greater than {@code 0}
      *          if {@code f1} is numerically greater than
      *          {@code f2}.
      * @since 1.4
      */
     public static int compare(float f1, float f2) {
         if (f1 < f2)
             return -1;           // Neither val is NaN, thisVal is smaller
         if (f1 > f2)
             return 1;            // Neither val is NaN, thisVal is larger
 
         // Cannot use floatToRawIntBits because of possibility of NaNs.
         int thisBits    = Float.floatToIntBits(f1);
         int anotherBits = Float.floatToIntBits(f2);
 
         return (thisBits == anotherBits ?  0 : // Values are equal
                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
                  1));                          // (0.0, -0.0) or (NaN, !NaN)
     }
 
     /**
      * Adds two {@code float} values together as per the + operator.
      *
      * @param a the first operand
      * @param b the second operand
      * @return the sum of {@code a} and {@code b}
      * @jls 4.2.4 Floating-Point Operations
      * @see java.util.function.BinaryOperator
      * @since 1.8
      */
     public static float sum(float a, float b) {
         return a + b;
     }
 
     /**
      * Returns the greater of two {@code float} values
      * as if by calling {@link Math#max(float, float) Math.max}.
      *
      * @param a the first operand
      * @param b the second operand
      * @return the greater of {@code a} and {@code b}
      * @see java.util.function.BinaryOperator
      * @since 1.8
      */
     public static float max(float a, float b) {
         return Math.max(a, b);
     }
 
     /**
      * Returns the smaller of two {@code float} values
      * as if by calling {@link Math#min(float, float) Math.min}.
      *
      * @param a the first operand
      * @param b the second operand
      * @return the smaller of {@code a} and {@code b}
      * @see java.util.function.BinaryOperator
      * @since 1.8
      */
     public static float min(float a, float b) {
         return Math.min(a, b);
     }
 
+    /**
+     * Returns an {@link Optional} containing the nominal descriptor for this
+     * instance, which is the instance itself.
+     *
+     * @return an {@link Optional} describing the {@linkplain Float} instance
+     * @since 12
+     */
+    @Override
+    public Optional<Float> describeConstable() {
+        return Optional.of(this);
+    }
+
+    /**
+     * Resolves this instance as a {@link ConstantDesc}, the result of which is
+     * the instance itself.
+     *
+     * @param lookup ignored
+     * @return the {@linkplain Float} instance
+     * @since 12
+     */
+    @Override
+    public Float resolveConstantDesc(MethodHandles.Lookup lookup) {
+        return this;
+    }
+
     /** use serialVersionUID from JDK 1.0.2 for interoperability */
     private static final long serialVersionUID = -2671257302660747028L;
 }