Showing changes in java/12/java.base/java/lang/Double.java (new version) from java/8/java/lang/Double.java (old version). +83 -35
 /*
- * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
  * under the terms of the GNU General Public License version 2 only, as
  * published by the Free Software Foundation.  Oracle designates this
  * particular file as subject to the "Classpath" exception as provided
  * by Oracle in the LICENSE file that accompanied this code.
  *
  * This code is distributed in the hope that it will be useful, but WITHOUT
  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  * version 2 for more details (a copy is included in the LICENSE file that
  * accompanied this code).
  *
  * You should have received a copy of the GNU General Public License version
  * 2 along with this work; if not, write to the Free Software Foundation,
  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  *
  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  * or visit www.oracle.com if you need additional information or have any
  * questions.
  */
 
 package java.lang;
 
-import sun.misc.FloatingDecimal;
-import sun.misc.FpUtils;
-import sun.misc.DoubleConsts;
+import java.lang.invoke.MethodHandles;
+import java.lang.constant.Constable;
+import java.lang.constant.ConstantDesc;
+import java.util.Optional;
+
+import jdk.internal.math.FloatingDecimal;
+import jdk.internal.math.DoubleConsts;
+import jdk.internal.HotSpotIntrinsicCandidate;
 
 /**
  * The {@code Double} class wraps a value of the primitive type
  * {@code double} in an object. An object of type
  * {@code Double} contains a single field whose type is
  * {@code double}.
  *
  * <p>In addition, this class provides several methods for converting a
  * {@code double} to a {@code String} and a
  * {@code String} to a {@code double}, as well as other
  * constants and methods useful when dealing with a
  * {@code double}.
  *
  * @author  Lee Boynton
  * @author  Arthur van Hoff
  * @author  Joseph D. Darcy
- * @since JDK1.0
+ * @since 1.0
  */
-public final class Double extends Number implements Comparable<Double> {
+public final class Double extends Number
+        implements Comparable<Double>, Constable, ConstantDesc {
     /**
      * A constant holding the positive infinity of type
      * {@code double}. It is equal to the value returned by
      * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
      */
     public static final double POSITIVE_INFINITY = 1.0 / 0.0;
 
     /**
      * A constant holding the negative infinity of type
      * {@code double}. It is equal to the value returned by
      * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
      */
     public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
 
     /**
      * A constant holding a Not-a-Number (NaN) value of type
      * {@code double}. It is equivalent to the value returned by
      * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
      */
     public static final double NaN = 0.0d / 0.0;
 
     /**
      * A constant holding the largest positive finite value of type
      * {@code double},
      * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
      * the hexadecimal floating-point literal
      * {@code 0x1.fffffffffffffP+1023} and also equal to
      * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
      */
     public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
 
     /**
      * A constant holding the smallest positive normal value of type
      * {@code double}, 2<sup>-1022</sup>.  It is equal to the
      * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
      * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
      *
      * @since 1.6
      */
     public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
 
     /**
      * A constant holding the smallest positive nonzero value of type
      * {@code double}, 2<sup>-1074</sup>. It is equal to the
      * hexadecimal floating-point literal
      * {@code 0x0.0000000000001P-1022} and also equal to
      * {@code Double.longBitsToDouble(0x1L)}.
      */
     public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
 
     /**
      * Maximum exponent a finite {@code double} variable may have.
      * It is equal to the value returned by
      * {@code Math.getExponent(Double.MAX_VALUE)}.
      *
      * @since 1.6
      */
     public static final int MAX_EXPONENT = 1023;
 
     /**
      * Minimum exponent a normalized {@code double} variable may
      * have.  It is equal to the value returned by
      * {@code Math.getExponent(Double.MIN_NORMAL)}.
      *
      * @since 1.6
      */
     public static final int MIN_EXPONENT = -1022;
 
     /**
      * The number of bits used to represent a {@code double} value.
      *
      * @since 1.5
      */
     public static final int SIZE = 64;
 
     /**
      * The number of bytes used to represent a {@code double} value.
      *
      * @since 1.8
      */
     public static final int BYTES = SIZE / Byte.SIZE;
 
     /**
      * The {@code Class} instance representing the primitive type
      * {@code double}.
      *
-     * @since JDK1.1
+     * @since 1.1
      */
     @SuppressWarnings("unchecked")
     public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
 
     /**
      * Returns a string representation of the {@code double}
      * argument. All characters mentioned below are ASCII characters.
      * <ul>
      * <li>If the argument is NaN, the result is the string
      *     "{@code NaN}".
      * <li>Otherwise, the result is a string that represents the sign and
      * magnitude (absolute value) of the argument. If the sign is negative,
      * the first character of the result is '{@code -}'
      * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
      * appears in the result. As for the magnitude <i>m</i>:
      * <ul>
      * <li>If <i>m</i> is infinity, it is represented by the characters
      * {@code "Infinity"}; thus, positive infinity produces the result
      * {@code "Infinity"} and negative infinity produces the result
      * {@code "-Infinity"}.
      *
      * <li>If <i>m</i> is zero, it is represented by the characters
      * {@code "0.0"}; thus, negative zero produces the result
      * {@code "-0.0"} and positive zero produces the result
      * {@code "0.0"}.
      *
      * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
      * than 10<sup>7</sup>, then it is represented as the integer part of
      * <i>m</i>, in decimal form with no leading zeroes, followed by
      * '{@code .}' ({@code '\u005Cu002E'}), followed by one or
      * more decimal digits representing the fractional part of <i>m</i>.
      *
      * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
      * equal to 10<sup>7</sup>, then it is represented in so-called
      * "computerized scientific notation." Let <i>n</i> be the unique
      * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
      * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
      * mathematically exact quotient of <i>m</i> and
      * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
      * magnitude is then represented as the integer part of <i>a</i>,
      * as a single decimal digit, followed by '{@code .}'
      * ({@code '\u005Cu002E'}), followed by decimal digits
      * representing the fractional part of <i>a</i>, followed by the
      * letter '{@code E}' ({@code '\u005Cu0045'}), followed
      * by a representation of <i>n</i> as a decimal integer, as
      * produced by the method {@link Integer#toString(int)}.
      * </ul>
      * </ul>
      * How many digits must be printed for the fractional part of
      * <i>m</i> or <i>a</i>? There must be at least one digit to represent
      * the fractional part, and beyond that as many, but only as many, more
      * digits as are needed to uniquely distinguish the argument value from
      * adjacent values of type {@code double}. That is, suppose that
      * <i>x</i> is the exact mathematical value represented by the decimal
      * representation produced by this method for a finite nonzero argument
      * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
      * to <i>x</i>; or if two {@code double} values are equally close
      * to <i>x</i>, then <i>d</i> must be one of them and the least
      * significant bit of the significand of <i>d</i> must be {@code 0}.
      *
      * <p>To create localized string representations of a floating-point
      * value, use subclasses of {@link java.text.NumberFormat}.
      *
      * @param   d   the {@code double} to be converted.
      * @return a string representation of the argument.
      */
     public static String toString(double d) {
         return FloatingDecimal.toJavaFormatString(d);
     }
 
     /**
      * Returns a hexadecimal string representation of the
      * {@code double} argument. All characters mentioned below
      * are ASCII characters.
      *
      * <ul>
      * <li>If the argument is NaN, the result is the string
      *     "{@code NaN}".
      * <li>Otherwise, the result is a string that represents the sign
      * and magnitude of the argument. If the sign is negative, the
      * first character of the result is '{@code -}'
      * ({@code '\u005Cu002D'}); if the sign is positive, no sign
      * character appears in the result. As for the magnitude <i>m</i>:
      *
      * <ul>
      * <li>If <i>m</i> is infinity, it is represented by the string
      * {@code "Infinity"}; thus, positive infinity produces the
      * result {@code "Infinity"} and negative infinity produces
      * the result {@code "-Infinity"}.
      *
      * <li>If <i>m</i> is zero, it is represented by the string
      * {@code "0x0.0p0"}; thus, negative zero produces the result
      * {@code "-0x0.0p0"} and positive zero produces the result
      * {@code "0x0.0p0"}.
      *
      * <li>If <i>m</i> is a {@code double} value with a
      * normalized representation, substrings are used to represent the
      * significand and exponent fields.  The significand is
      * represented by the characters {@code "0x1."}
      * followed by a lowercase hexadecimal representation of the rest
      * of the significand as a fraction.  Trailing zeros in the
      * hexadecimal representation are removed unless all the digits
      * are zero, in which case a single zero is used. Next, the
      * exponent is represented by {@code "p"} followed
      * by a decimal string of the unbiased exponent as if produced by
      * a call to {@link Integer#toString(int) Integer.toString} on the
      * exponent value.
      *
      * <li>If <i>m</i> is a {@code double} value with a subnormal
      * representation, the significand is represented by the
      * characters {@code "0x0."} followed by a
      * hexadecimal representation of the rest of the significand as a
      * fraction.  Trailing zeros in the hexadecimal representation are
      * removed. Next, the exponent is represented by
      * {@code "p-1022"}.  Note that there must be at
      * least one nonzero digit in a subnormal significand.
      *
      * </ul>
      *
      * </ul>
      *
-     * <table border>
+     * <table class="striped">
      * <caption>Examples</caption>
-     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
-     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
-     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
-     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
-     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
-     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
-     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
-     * <tr><td>{@code Double.MAX_VALUE}</td>
+     * <thead>
+     * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
+     * </thead>
+     * <tbody style="text-align:right">
+     * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
+     * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
+     * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
+     * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
+     * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
+     * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
+     * <tr><th scope="row">{@code Double.MAX_VALUE}</th>
      *     <td>{@code 0x1.fffffffffffffp1023}</td>
-     * <tr><td>{@code Minimum Normal Value}</td>
+     * <tr><th scope="row">{@code Minimum Normal Value}</th>
      *     <td>{@code 0x1.0p-1022}</td>
-     * <tr><td>{@code Maximum Subnormal Value}</td>
+     * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
      *     <td>{@code 0x0.fffffffffffffp-1022}</td>
-     * <tr><td>{@code Double.MIN_VALUE}</td>
+     * <tr><th scope="row">{@code Double.MIN_VALUE}</th>
      *     <td>{@code 0x0.0000000000001p-1022}</td>
+     * </tbody>
      * </table>
      * @param   d   the {@code double} to be converted.
      * @return a hex string representation of the argument.
      * @since 1.5
      * @author Joseph D. Darcy
      */
     public static String toHexString(double d) {
         /*
          * Modeled after the "a" conversion specifier in C99, section
          * 7.19.6.1; however, the output of this method is more
          * tightly specified.
          */
         if (!isFinite(d) )
             // For infinity and NaN, use the decimal output.
             return Double.toString(d);
         else {
             // Initialized to maximum size of output.
             StringBuilder answer = new StringBuilder(24);
 
             if (Math.copySign(1.0, d) == -1.0)    // value is negative,
                 answer.append("-");                  // so append sign info
 
             answer.append("0x");
 
             d = Math.abs(d);
 
             if(d == 0.0) {
                 answer.append("0.0p0");
             } else {
-                boolean subnormal = (d < DoubleConsts.MIN_NORMAL);
+                boolean subnormal = (d < Double.MIN_NORMAL);
 
                 // Isolate significand bits and OR in a high-order bit
                 // so that the string representation has a known
                 // length.
                 long signifBits = (Double.doubleToLongBits(d)
                                    & DoubleConsts.SIGNIF_BIT_MASK) |
                     0x1000000000000000L;
 
                 // Subnormal values have a 0 implicit bit; normal
                 // values have a 1 implicit bit.
                 answer.append(subnormal ? "0." : "1.");
 
                 // Isolate the low-order 13 digits of the hex
                 // representation.  If all the digits are zero,
                 // replace with a single 0; otherwise, remove all
                 // trailing zeros.
                 String signif = Long.toHexString(signifBits).substring(3,16);
                 answer.append(signif.equals("0000000000000") ? // 13 zeros
                               "0":
                               signif.replaceFirst("0{1,12}$", ""));
 
                 answer.append('p');
                 // If the value is subnormal, use the E_min exponent
                 // value for double; otherwise, extract and report d's
                 // exponent (the representation of a subnormal uses
                 // E_min -1).
                 answer.append(subnormal ?
-                              DoubleConsts.MIN_EXPONENT:
+                              Double.MIN_EXPONENT:
                               Math.getExponent(d));
             }
             return answer.toString();
         }
     }
 
     /**
      * Returns a {@code Double} object holding the
      * {@code double} value represented by the argument string
      * {@code s}.
      *
      * <p>If {@code s} is {@code null}, then a
      * {@code NullPointerException} is thrown.
      *
      * <p>Leading and trailing whitespace characters in {@code s}
      * are ignored.  Whitespace is removed as if by the {@link
      * String#trim} method; that is, both ASCII space and control
      * characters are removed. The rest of {@code s} should
      * constitute a <i>FloatValue</i> as described by the lexical
      * syntax rules:
      *
      * <blockquote>
      * <dl>
      * <dt><i>FloatValue:</i>
      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
      * <dd><i>SignedInteger</i>
      * </dl>
      *
      * <dl>
      * <dt><i>HexFloatingPointLiteral</i>:
      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
      * </dl>
      *
      * <dl>
      * <dt><i>HexSignificand:</i>
      * <dd><i>HexNumeral</i>
      * <dd><i>HexNumeral</i> {@code .}
      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
      *     </i>{@code .}<i> HexDigits</i>
      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
      *     </i>{@code .} <i>HexDigits</i>
      * </dl>
      *
      * <dl>
      * <dt><i>BinaryExponent:</i>
      * <dd><i>BinaryExponentIndicator SignedInteger</i>
      * </dl>
      *
      * <dl>
      * <dt><i>BinaryExponentIndicator:</i>
      * <dd>{@code p}
      * <dd>{@code P}
      * </dl>
      *
      * </blockquote>
      *
      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
      * sections of
      * <cite>The Java&trade; Language Specification</cite>,
      * except that underscores are not accepted between digits.
      * If {@code s} does not have the form of
      * a <i>FloatValue</i>, then a {@code NumberFormatException}
      * is thrown. Otherwise, {@code s} is regarded as
      * representing an exact decimal value in the usual
      * "computerized scientific notation" or as an exact
      * hexadecimal value; this exact numerical value is then
      * conceptually converted to an "infinitely precise"
      * binary value that is then rounded to type {@code double}
      * by the usual round-to-nearest rule of IEEE 754 floating-point
      * arithmetic, which includes preserving the sign of a zero
      * value.
      *
      * Note that the round-to-nearest rule also implies overflow and
      * underflow behaviour; if the exact value of {@code s} is large
      * enough in magnitude (greater than or equal to ({@link
      * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
      * rounding to {@code double} will result in an infinity and if the
      * exact value of {@code s} is small enough in magnitude (less
      * than or equal to {@link #MIN_VALUE}/2), rounding to float will
      * result in a zero.
      *
      * Finally, after rounding a {@code Double} object representing
      * this {@code double} value is returned.
      *
      * <p> To interpret localized string representations of a
      * floating-point value, use subclasses of {@link
      * java.text.NumberFormat}.
      *
      * <p>Note that trailing format specifiers, specifiers that
      * determine the type of a floating-point literal
      * ({@code 1.0f} is a {@code float} value;
      * {@code 1.0d} is a {@code double} value), do
      * <em>not</em> influence the results of this method.  In other
      * words, the numerical value of the input string is converted
      * directly to the target floating-point type.  The two-step
      * sequence of conversions, string to {@code float} followed
      * by {@code float} to {@code double}, is <em>not</em>
      * equivalent to converting a string directly to
      * {@code double}. For example, the {@code float}
      * literal {@code 0.1f} is equal to the {@code double}
      * value {@code 0.10000000149011612}; the {@code float}
      * literal {@code 0.1f} represents a different numerical
      * value than the {@code double} literal
      * {@code 0.1}. (The numerical value 0.1 cannot be exactly
      * represented in a binary floating-point number.)
      *
      * <p>To avoid calling this method on an invalid string and having
      * a {@code NumberFormatException} be thrown, the regular
      * expression below can be used to screen the input string:
      *
      * <pre>{@code
      *  final String Digits     = "(\\p{Digit}+)";
      *  final String HexDigits  = "(\\p{XDigit}+)";
      *  // an exponent is 'e' or 'E' followed by an optionally
      *  // signed decimal integer.
      *  final String Exp        = "[eE][+-]?"+Digits;
      *  final String fpRegex    =
      *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
      *       "[+-]?(" + // Optional sign character
      *       "NaN|" +           // "NaN" string
      *       "Infinity|" +      // "Infinity" string
      *
      *       // A decimal floating-point string representing a finite positive
      *       // number without a leading sign has at most five basic pieces:
      *       // Digits . Digits ExponentPart FloatTypeSuffix
      *       //
      *       // Since this method allows integer-only strings as input
      *       // in addition to strings of floating-point literals, the
      *       // two sub-patterns below are simplifications of the grammar
      *       // productions from section 3.10.2 of
      *       // The Java Language Specification.
      *
      *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
      *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
      *
      *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
      *       "(\\.("+Digits+")("+Exp+")?)|"+
      *
      *       // Hexadecimal strings
      *       "((" +
      *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
      *        "(0[xX]" + HexDigits + "(\\.)?)|" +
      *
      *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
      *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
      *
      *        ")[pP][+-]?" + Digits + "))" +
      *       "[fFdD]?))" +
      *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
      *
      *  if (Pattern.matches(fpRegex, myString))
      *      Double.valueOf(myString); // Will not throw NumberFormatException
      *  else {
      *      // Perform suitable alternative action
      *  }
      * }</pre>
      *
      * @param      s   the string to be parsed.
      * @return     a {@code Double} object holding the value
      *             represented by the {@code String} argument.
      * @throws     NumberFormatException  if the string does not contain a
      *             parsable number.
      */
     public static Double valueOf(String s) throws NumberFormatException {
         return new Double(parseDouble(s));
     }
 
     /**
      * Returns a {@code Double} instance representing the specified
      * {@code double} value.
      * If a new {@code Double} instance is not required, this method
      * should generally be used in preference to the constructor
      * {@link #Double(double)}, as this method is likely to yield
      * significantly better space and time performance by caching
      * frequently requested values.
      *
      * @param  d a double value.
      * @return a {@code Double} instance representing {@code d}.
      * @since  1.5
      */
+    @HotSpotIntrinsicCandidate
     public static Double valueOf(double d) {
         return new Double(d);
     }
 
     /**
      * Returns a new {@code double} initialized to the value
      * represented by the specified {@code String}, as performed
      * by the {@code valueOf} method of class
      * {@code Double}.
      *
      * @param  s   the string to be parsed.
      * @return the {@code double} value represented by the string
      *         argument.
      * @throws NullPointerException  if the string is null
      * @throws NumberFormatException if the string does not contain
      *         a parsable {@code double}.
      * @see    java.lang.Double#valueOf(String)
      * @since 1.2
      */
     public static double parseDouble(String s) throws NumberFormatException {
         return FloatingDecimal.parseDouble(s);
     }
 
     /**
      * Returns {@code true} if the specified number is a
      * Not-a-Number (NaN) value, {@code false} otherwise.
      *
      * @param   v   the value to be tested.
      * @return  {@code true} if the value of the argument is NaN;
      *          {@code false} otherwise.
      */
     public static boolean isNaN(double v) {
         return (v != v);
     }
 
     /**
      * Returns {@code true} if the specified number is infinitely
      * large in magnitude, {@code false} otherwise.
      *
      * @param   v   the value to be tested.
      * @return  {@code true} if the value of the argument is positive
      *          infinity or negative infinity; {@code false} otherwise.
      */
     public static boolean isInfinite(double v) {
         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
     }
 
     /**
      * Returns {@code true} if the argument is a finite floating-point
      * value; returns {@code false} otherwise (for NaN and infinity
      * arguments).
      *
      * @param d the {@code double} value to be tested
      * @return {@code true} if the argument is a finite
      * floating-point value, {@code false} otherwise.
      * @since 1.8
      */
     public static boolean isFinite(double d) {
-        return Math.abs(d) <= DoubleConsts.MAX_VALUE;
+        return Math.abs(d) <= Double.MAX_VALUE;
     }
 
     /**
      * The value of the Double.
      *
      * @serial
      */
     private final double value;
 
     /**
      * Constructs a newly allocated {@code Double} object that
      * represents the primitive {@code double} argument.
      *
      * @param   value   the value to be represented by the {@code Double}.
+     *
+     * @deprecated
+     * It is rarely appropriate to use this constructor. The static factory
+     * {@link #valueOf(double)} is generally a better choice, as it is
+     * likely to yield significantly better space and time performance.
      */
+    @Deprecated(since="9")
     public Double(double value) {
         this.value = value;
     }
 
     /**
      * Constructs a newly allocated {@code Double} object that
      * represents the floating-point value of type {@code double}
      * represented by the string. The string is converted to a
      * {@code double} value as if by the {@code valueOf} method.
      *
      * @param  s  a string to be converted to a {@code Double}.
-     * @throws    NumberFormatException  if the string does not contain a
+     * @throws    NumberFormatException if the string does not contain a
      *            parsable number.
-     * @see       java.lang.Double#valueOf(java.lang.String)
+     *
+     * @deprecated
+     * It is rarely appropriate to use this constructor.
+     * Use {@link #parseDouble(String)} to convert a string to a
+     * {@code double} primitive, or use {@link #valueOf(String)}
+     * to convert a string to a {@code Double} object.
      */
+    @Deprecated(since="9")
     public Double(String s) throws NumberFormatException {
         value = parseDouble(s);
     }
 
     /**
      * Returns {@code true} if this {@code Double} value is
      * a Not-a-Number (NaN), {@code false} otherwise.
      *
      * @return  {@code true} if the value represented by this object is
      *          NaN; {@code false} otherwise.
      */
     public boolean isNaN() {
         return isNaN(value);
     }
 
     /**
      * Returns {@code true} if this {@code Double} value is
      * infinitely large in magnitude, {@code false} otherwise.
      *
      * @return  {@code true} if the value represented by this object is
      *          positive infinity or negative infinity;
      *          {@code false} otherwise.
      */
     public boolean isInfinite() {
         return isInfinite(value);
     }
 
     /**
      * Returns a string representation of this {@code Double} object.
      * The primitive {@code double} value represented by this
      * object is converted to a string exactly as if by the method
      * {@code toString} of one argument.
      *
      * @return  a {@code String} representation of this object.
      * @see java.lang.Double#toString(double)
      */
     public String toString() {
         return toString(value);
     }
 
     /**
      * Returns the value of this {@code Double} as a {@code byte}
      * after a narrowing primitive conversion.
      *
      * @return  the {@code double} value represented by this object
      *          converted to type {@code byte}
      * @jls 5.1.3 Narrowing Primitive Conversions
-     * @since JDK1.1
+     * @since 1.1
      */
     public byte byteValue() {
         return (byte)value;
     }
 
     /**
      * Returns the value of this {@code Double} as a {@code short}
      * after a narrowing primitive conversion.
      *
      * @return  the {@code double} value represented by this object
      *          converted to type {@code short}
      * @jls 5.1.3 Narrowing Primitive Conversions
-     * @since JDK1.1
+     * @since 1.1
      */
     public short shortValue() {
         return (short)value;
     }
 
     /**
      * Returns the value of this {@code Double} as an {@code int}
      * after a narrowing primitive conversion.
      * @jls 5.1.3 Narrowing Primitive Conversions
      *
      * @return  the {@code double} value represented by this object
      *          converted to type {@code int}
      */
     public int intValue() {
         return (int)value;
     }
 
     /**
      * Returns the value of this {@code Double} as a {@code long}
      * after a narrowing primitive conversion.
      *
      * @return  the {@code double} value represented by this object
      *          converted to type {@code long}
      * @jls 5.1.3 Narrowing Primitive Conversions
      */
     public long longValue() {
         return (long)value;
     }
 
     /**
      * Returns the value of this {@code Double} as a {@code float}
      * after a narrowing primitive conversion.
      *
      * @return  the {@code double} value represented by this object
      *          converted to type {@code float}
      * @jls 5.1.3 Narrowing Primitive Conversions
-     * @since JDK1.0
+     * @since 1.0
      */
     public float floatValue() {
         return (float)value;
     }
 
     /**
      * Returns the {@code double} value of this {@code Double} object.
      *
      * @return the {@code double} value represented by this object
      */
+    @HotSpotIntrinsicCandidate
     public double doubleValue() {
         return value;
     }
 
     /**
      * Returns a hash code for this {@code Double} object. The
      * result is the exclusive OR of the two halves of the
      * {@code long} integer bit representation, exactly as
      * produced by the method {@link #doubleToLongBits(double)}, of
      * the primitive {@code double} value represented by this
      * {@code Double} object. That is, the hash code is the value
      * of the expression:
      *
      * <blockquote>
      *  {@code (int)(v^(v>>>32))}
      * </blockquote>
      *
      * where {@code v} is defined by:
      *
      * <blockquote>
      *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
      * </blockquote>
      *
      * @return  a {@code hash code} value for this object.
      */
     @Override
     public int hashCode() {
         return Double.hashCode(value);
     }
 
     /**
      * Returns a hash code for a {@code double} value; compatible with
      * {@code Double.hashCode()}.
      *
      * @param value the value to hash
      * @return a hash code value for a {@code double} value.
      * @since 1.8
      */
     public static int hashCode(double value) {
         long bits = doubleToLongBits(value);
         return (int)(bits ^ (bits >>> 32));
     }
 
     /**
      * Compares this object against the specified object.  The result
      * is {@code true} if and only if the argument is not
      * {@code null} and is a {@code Double} object that
      * represents a {@code double} that has the same value as the
      * {@code double} represented by this object. For this
      * purpose, two {@code double} values are considered to be
      * the same if and only if the method {@link
      * #doubleToLongBits(double)} returns the identical
      * {@code long} value when applied to each.
      *
      * <p>Note that in most cases, for two instances of class
      * {@code Double}, {@code d1} and {@code d2}, the
      * value of {@code d1.equals(d2)} is {@code true} if and
      * only if
      *
      * <blockquote>
      *  {@code d1.doubleValue() == d2.doubleValue()}
      * </blockquote>
      *
      * <p>also has the value {@code true}. However, there are two
      * exceptions:
      * <ul>
      * <li>If {@code d1} and {@code d2} both represent
      *     {@code Double.NaN}, then the {@code equals} method
      *     returns {@code true}, even though
      *     {@code Double.NaN==Double.NaN} has the value
      *     {@code false}.
      * <li>If {@code d1} represents {@code +0.0} while
      *     {@code d2} represents {@code -0.0}, or vice versa,
      *     the {@code equal} test has the value {@code false},
      *     even though {@code +0.0==-0.0} has the value {@code true}.
      * </ul>
      * This definition allows hash tables to operate properly.
      * @param   obj   the object to compare with.
      * @return  {@code true} if the objects are the same;
      *          {@code false} otherwise.
      * @see java.lang.Double#doubleToLongBits(double)
      */
     public boolean equals(Object obj) {
         return (obj instanceof Double)
                && (doubleToLongBits(((Double)obj).value) ==
                       doubleToLongBits(value));
     }
 
     /**
      * Returns a representation of the specified floating-point value
      * according to the IEEE 754 floating-point "double
      * format" bit layout.
      *
      * <p>Bit 63 (the bit that is selected by the mask
      * {@code 0x8000000000000000L}) represents the sign of the
      * floating-point number. Bits
      * 62-52 (the bits that are selected by the mask
      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
      * (the bits that are selected by the mask
      * {@code 0x000fffffffffffffL}) represent the significand
      * (sometimes called the mantissa) of the floating-point number.
      *
      * <p>If the argument is positive infinity, the result is
      * {@code 0x7ff0000000000000L}.
      *
      * <p>If the argument is negative infinity, the result is
      * {@code 0xfff0000000000000L}.
      *
      * <p>If the argument is NaN, the result is
      * {@code 0x7ff8000000000000L}.
      *
      * <p>In all cases, the result is a {@code long} integer that, when
      * given to the {@link #longBitsToDouble(long)} method, will produce a
      * floating-point value the same as the argument to
      * {@code doubleToLongBits} (except all NaN values are
      * collapsed to a single "canonical" NaN value).
      *
      * @param   value   a {@code double} precision floating-point number.
      * @return the bits that represent the floating-point number.
      */
+    @HotSpotIntrinsicCandidate
     public static long doubleToLongBits(double value) {
-        long result = doubleToRawLongBits(value);
-        // Check for NaN based on values of bit fields, maximum
-        // exponent and nonzero significand.
-        if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
-              DoubleConsts.EXP_BIT_MASK) &&
-             (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
-            result = 0x7ff8000000000000L;
-        return result;
+        if (!isNaN(value)) {
+            return doubleToRawLongBits(value);
+        }
+        return 0x7ff8000000000000L;
     }
 
     /**
      * Returns a representation of the specified floating-point value
      * according to the IEEE 754 floating-point "double
      * format" bit layout, preserving Not-a-Number (NaN) values.
      *
      * <p>Bit 63 (the bit that is selected by the mask
      * {@code 0x8000000000000000L}) represents the sign of the
      * floating-point number. Bits
      * 62-52 (the bits that are selected by the mask
      * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
      * (the bits that are selected by the mask
      * {@code 0x000fffffffffffffL}) represent the significand
      * (sometimes called the mantissa) of the floating-point number.
      *
      * <p>If the argument is positive infinity, the result is
      * {@code 0x7ff0000000000000L}.
      *
      * <p>If the argument is negative infinity, the result is
      * {@code 0xfff0000000000000L}.
      *
      * <p>If the argument is NaN, the result is the {@code long}
      * integer representing the actual NaN value.  Unlike the
      * {@code doubleToLongBits} method,
      * {@code doubleToRawLongBits} does not collapse all the bit
      * patterns encoding a NaN to a single "canonical" NaN
      * value.
      *
      * <p>In all cases, the result is a {@code long} integer that,
      * when given to the {@link #longBitsToDouble(long)} method, will
      * produce a floating-point value the same as the argument to
      * {@code doubleToRawLongBits}.
      *
      * @param   value   a {@code double} precision floating-point number.
      * @return the bits that represent the floating-point number.
      * @since 1.3
      */
+    @HotSpotIntrinsicCandidate
     public static native long doubleToRawLongBits(double value);
 
     /**
      * Returns the {@code double} value corresponding to a given
      * bit representation.
      * The argument is considered to be a representation of a
      * floating-point value according to the IEEE 754 floating-point
      * "double format" bit layout.
      *
      * <p>If the argument is {@code 0x7ff0000000000000L}, the result
      * is positive infinity.
      *
      * <p>If the argument is {@code 0xfff0000000000000L}, the result
      * is negative infinity.
      *
      * <p>If the argument is any value in the range
      * {@code 0x7ff0000000000001L} through
      * {@code 0x7fffffffffffffffL} or in the range
      * {@code 0xfff0000000000001L} through
      * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
      * 754 floating-point operation provided by Java can distinguish
      * between two NaN values of the same type with different bit
      * patterns.  Distinct values of NaN are only distinguishable by
      * use of the {@code Double.doubleToRawLongBits} method.
      *
      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
      * values that can be computed from the argument:
      *
      * <blockquote><pre>{@code
      * int s = ((bits >> 63) == 0) ? 1 : -1;
      * int e = (int)((bits >> 52) & 0x7ffL);
      * long m = (e == 0) ?
      *                 (bits & 0xfffffffffffffL) << 1 :
      *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
      * }</pre></blockquote>
      *
      * Then the floating-point result equals the value of the mathematical
      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
      *
      * <p>Note that this method may not be able to return a
      * {@code double} NaN with exactly same bit pattern as the
      * {@code long} argument.  IEEE 754 distinguishes between two
      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
      * differences between the two kinds of NaN are generally not
      * visible in Java.  Arithmetic operations on signaling NaNs turn
      * them into quiet NaNs with a different, but often similar, bit
      * pattern.  However, on some processors merely copying a
      * signaling NaN also performs that conversion.  In particular,
      * copying a signaling NaN to return it to the calling method
      * may perform this conversion.  So {@code longBitsToDouble}
      * may not be able to return a {@code double} with a
      * signaling NaN bit pattern.  Consequently, for some
      * {@code long} values,
      * {@code doubleToRawLongBits(longBitsToDouble(start))} may
      * <i>not</i> equal {@code start}.  Moreover, which
      * particular bit patterns represent signaling NaNs is platform
      * dependent; although all NaN bit patterns, quiet or signaling,
      * must be in the NaN range identified above.
      *
      * @param   bits   any {@code long} integer.
      * @return  the {@code double} floating-point value with the same
      *          bit pattern.
      */
+    @HotSpotIntrinsicCandidate
     public static native double longBitsToDouble(long bits);
 
     /**
      * Compares two {@code Double} objects numerically.  There
      * are two ways in which comparisons performed by this method
      * differ from those performed by the Java language numerical
      * comparison operators ({@code <, <=, ==, >=, >})
      * when applied to primitive {@code double} values:
      * <ul><li>
      *          {@code Double.NaN} is considered by this method
      *          to be equal to itself and greater than all other
      *          {@code double} values (including
      *          {@code Double.POSITIVE_INFINITY}).
      * <li>
      *          {@code 0.0d} is considered by this method to be greater
      *          than {@code -0.0d}.
      * </ul>
      * This ensures that the <i>natural ordering</i> of
      * {@code Double} objects imposed by this method is <i>consistent
      * with equals</i>.
      *
      * @param   anotherDouble   the {@code Double} to be compared.
      * @return  the value {@code 0} if {@code anotherDouble} is
      *          numerically equal to this {@code Double}; a value
      *          less than {@code 0} if this {@code Double}
      *          is numerically less than {@code anotherDouble};
      *          and a value greater than {@code 0} if this
      *          {@code Double} is numerically greater than
      *          {@code anotherDouble}.
      *
      * @since   1.2
      */
     public int compareTo(Double anotherDouble) {
         return Double.compare(value, anotherDouble.value);
     }
 
     /**
      * Compares the two specified {@code double} values. The sign
      * of the integer value returned is the same as that of the
      * integer that would be returned by the call:
      * <pre>
      *    new Double(d1).compareTo(new Double(d2))
      * </pre>
      *
      * @param   d1        the first {@code double} to compare
      * @param   d2        the second {@code double} to compare
      * @return  the value {@code 0} if {@code d1} is
      *          numerically equal to {@code d2}; a value less than
      *          {@code 0} if {@code d1} is numerically less than
      *          {@code d2}; and a value greater than {@code 0}
      *          if {@code d1} is numerically greater than
      *          {@code d2}.
      * @since 1.4
      */
     public static int compare(double d1, double d2) {
         if (d1 < d2)
             return -1;           // Neither val is NaN, thisVal is smaller
         if (d1 > d2)
             return 1;            // Neither val is NaN, thisVal is larger
 
         // Cannot use doubleToRawLongBits because of possibility of NaNs.
         long thisBits    = Double.doubleToLongBits(d1);
         long anotherBits = Double.doubleToLongBits(d2);
 
         return (thisBits == anotherBits ?  0 : // Values are equal
                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
                  1));                          // (0.0, -0.0) or (NaN, !NaN)
     }
 
     /**
      * Adds two {@code double} values together as per the + operator.
      *
      * @param a the first operand
      * @param b the second operand
      * @return the sum of {@code a} and {@code b}
      * @jls 4.2.4 Floating-Point Operations
      * @see java.util.function.BinaryOperator
      * @since 1.8
      */
     public static double sum(double a, double b) {
         return a + b;
     }
 
     /**
      * Returns the greater of two {@code double} values
      * as if by calling {@link Math#max(double, double) Math.max}.
      *
      * @param a the first operand
      * @param b the second operand
      * @return the greater of {@code a} and {@code b}
      * @see java.util.function.BinaryOperator
      * @since 1.8
      */
     public static double max(double a, double b) {
         return Math.max(a, b);
     }
 
     /**
      * Returns the smaller of two {@code double} values
      * as if by calling {@link Math#min(double, double) Math.min}.
      *
      * @param a the first operand
      * @param b the second operand
      * @return the smaller of {@code a} and {@code b}.
      * @see java.util.function.BinaryOperator
      * @since 1.8
      */
     public static double min(double a, double b) {
         return Math.min(a, b);
     }
 
+    /**
+     * Returns an {@link Optional} containing the nominal descriptor for this
+     * instance, which is the instance itself.
+     *
+     * @return an {@link Optional} describing the {@linkplain Double} instance
+     * @since 12
+     */
+    @Override
+    public Optional<Double> describeConstable() {
+        return Optional.of(this);
+    }
+
+    /**
+     * Resolves this instance as a {@link ConstantDesc}, the result of which is
+     * the instance itself.
+     *
+     * @param lookup ignored
+     * @return the {@linkplain Double} instance
+     * @since 12
+     */
+    @Override
+    public Double resolveConstantDesc(MethodHandles.Lookup lookup) {
+        return this;
+    }
+
     /** use serialVersionUID from JDK 1.0.2 for interoperability */
     private static final long serialVersionUID = -9172774392245257468L;
 }