/*
 * Copyright (c) 1995, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt.image;

import java.awt.color.ColorSpace;
import java.awt.Transparency;

The DirectColorModel class is a ColorModel class that works with pixel values that represent RGB color and alpha information as separate samples and that pack all samples for a single pixel into a single int, short, or byte quantity. This class can be used only with ColorSpaces of type ColorSpace.TYPE_RGB. In addition, for each component of the ColorSpace, the minimum normalized component value obtained via the getMinValue() method of ColorSpace must be 0.0, and the maximum value obtained via the getMaxValue() method must be 1.0 (these min/max values are typical for RGB spaces). There must be three color samples in the pixel values and there can be a single alpha sample. For those methods that use a primitive array pixel representation of type transferType, the array length is always one. The transfer types supported are DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, and DataBuffer.TYPE_INT. Color and alpha samples are stored in the single element of the array in bits indicated by bit masks. Each bit mask must be contiguous and masks must not overlap. The same masks apply to the single int pixel representation used by other methods. The correspondence of masks and color/alpha samples is as follows:
  • Masks are identified by indices running from 0 through 2 if no alpha is present, or 3 if an alpha is present.
  • The first three indices refer to color samples; index 0 corresponds to red, index 1 to green, and index 2 to blue.
  • Index 3 corresponds to the alpha sample, if present.

The translation from pixel values to color/alpha components for display or processing purposes is a one-to-one correspondence of samples to components. A DirectColorModel is typically used with image data which uses masks to define packed samples. For example, a DirectColorModel can be used in conjunction with a SinglePixelPackedSampleModel to construct a BufferedImage. Normally the masks used by the SampleModel and the ColorModel would be the same. However, if they are different, the color interpretation of pixel data will be done according to the masks of the ColorModel.

A single int pixel representation is valid for all objects of this class, since it is always possible to represent pixel values used with this class in a single int. Therefore, methods which use this representation will not throw an IllegalArgumentException due to an invalid pixel value.

This color model is similar to an X11 TrueColor visual. The default RGB ColorModel specified by the getRGBdefault method is a DirectColorModel with the following parameters:

Number of bits:        32
Red mask:              0x00ff0000
Green mask:            0x0000ff00
Blue mask:             0x000000ff
Alpha mask:            0xff000000
Color space:           sRGB
isAlphaPremultiplied:  False
Transparency:          Transparency.TRANSLUCENT
transferType:          DataBuffer.TYPE_INT

Many of the methods in this class are final. This is because the underlying native graphics code makes assumptions about the layout and operation of this class and those assumptions are reflected in the implementations of the methods here that are marked final. You can subclass this class for other reasons, but you cannot override or modify the behavior of those methods.

See Also:
/** * The {@code DirectColorModel} class is a {@code ColorModel} * class that works with pixel values that represent RGB * color and alpha information as separate samples and that pack all * samples for a single pixel into a single int, short, or byte quantity. * This class can be used only with ColorSpaces of type ColorSpace.TYPE_RGB. * In addition, for each component of the ColorSpace, the minimum * normalized component value obtained via the {@code getMinValue()} * method of ColorSpace must be 0.0, and the maximum value obtained via * the {@code getMaxValue()} method must be 1.0 (these min/max * values are typical for RGB spaces). * There must be three color samples in the pixel values and there can * be a single alpha sample. For those methods that use a primitive array * pixel representation of type {@code transferType}, the array * length is always one. The transfer * types supported are DataBuffer.TYPE_BYTE, * DataBuffer.TYPE_USHORT, and DataBuffer.TYPE_INT. * Color and alpha samples are stored in the single * element of the array in bits indicated by bit masks. Each bit mask * must be contiguous and masks must not overlap. The same masks apply to * the single int pixel representation used by other methods. The * correspondence of masks and color/alpha samples is as follows: * <ul> * <li> Masks are identified by indices running from 0 through 2 * if no alpha is present, or 3 if an alpha is present. * <li> The first three indices refer to color samples; * index 0 corresponds to red, index 1 to green, and index 2 to blue. * <li> Index 3 corresponds to the alpha sample, if present. * </ul> * <p> * The translation from pixel values to color/alpha components for * display or processing purposes is a one-to-one correspondence of * samples to components. A {@code DirectColorModel} is * typically used with image data which uses masks to define packed * samples. For example, a {@code DirectColorModel} can be used in * conjunction with a {@code SinglePixelPackedSampleModel} to * construct a {@link BufferedImage}. Normally the masks used by the * {@link SampleModel} and the {@code ColorModel} would be the * same. However, if they are different, the color interpretation * of pixel data will be done according to the masks of the * {@code ColorModel}. * <p> * A single int pixel representation is valid for all objects of this * class, since it is always possible to represent pixel values used with * this class in a single int. Therefore, methods which use this * representation will not throw an {@code IllegalArgumentException} * due to an invalid pixel value. * <p> * This color model is similar to an X11 TrueColor visual. * The default RGB ColorModel specified by the * {@link ColorModel#getRGBdefault() getRGBdefault} method is a * {@code DirectColorModel} with the following parameters: * <pre> * Number of bits: 32 * Red mask: 0x00ff0000 * Green mask: 0x0000ff00 * Blue mask: 0x000000ff * Alpha mask: 0xff000000 * Color space: sRGB * isAlphaPremultiplied: False * Transparency: Transparency.TRANSLUCENT * transferType: DataBuffer.TYPE_INT * </pre> * <p> * Many of the methods in this class are final. This is because the * underlying native graphics code makes assumptions about the layout * and operation of this class and those assumptions are reflected in * the implementations of the methods here that are marked final. You * can subclass this class for other reasons, but you cannot override * or modify the behavior of those methods. * * @see ColorModel * @see ColorSpace * @see SinglePixelPackedSampleModel * @see BufferedImage * @see ColorModel#getRGBdefault * */
public class DirectColorModel extends PackedColorModel { private int red_mask; private int green_mask; private int blue_mask; private int alpha_mask; private int red_offset; private int green_offset; private int blue_offset; private int alpha_offset; private int red_scale; private int green_scale; private int blue_scale; private int alpha_scale; private boolean is_LinearRGB; private int lRGBprecision; private byte[] tosRGB8LUT; private byte[] fromsRGB8LUT8; private short[] fromsRGB8LUT16;
Constructs a DirectColorModel from the specified masks that indicate which bits in an int pixel representation contain the red, green and blue color samples. As pixel values do not contain alpha information, all pixels are treated as opaque, which means that alpha = 1.0. All of the bits in each mask must be contiguous and fit in the specified number of least significant bits of an int pixel representation. The ColorSpace is the default sRGB space. The transparency value is Transparency.OPAQUE. The transfer type is the smallest of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, or DataBuffer.TYPE_INT that can hold a single pixel.
Params:
  • bits – the number of bits in the pixel values; for example, the sum of the number of bits in the masks.
  • rmask – specifies a mask indicating which bits in an integer pixel contain the red component
  • gmask – specifies a mask indicating which bits in an integer pixel contain the green component
  • bmask – specifies a mask indicating which bits in an integer pixel contain the blue component
/** * Constructs a {@code DirectColorModel} from the specified masks * that indicate which bits in an {@code int} pixel representation * contain the red, green and blue color samples. As pixel values do not * contain alpha information, all pixels are treated as opaque, which * means that alpha&nbsp;=&nbsp;1.0. All of the bits * in each mask must be contiguous and fit in the specified number * of least significant bits of an {@code int} pixel representation. * The {@code ColorSpace} is the default sRGB space. The * transparency value is Transparency.OPAQUE. The transfer type * is the smallest of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, * or DataBuffer.TYPE_INT that can hold a single pixel. * @param bits the number of bits in the pixel values; for example, * the sum of the number of bits in the masks. * @param rmask specifies a mask indicating which bits in an * integer pixel contain the red component * @param gmask specifies a mask indicating which bits in an * integer pixel contain the green component * @param bmask specifies a mask indicating which bits in an * integer pixel contain the blue component * */
public DirectColorModel(int bits, int rmask, int gmask, int bmask) { this(bits, rmask, gmask, bmask, 0); }
Constructs a DirectColorModel from the specified masks that indicate which bits in an int pixel representation contain the red, green and blue color samples and the alpha sample, if present. If amask is 0, pixel values do not contain alpha information and all pixels are treated as opaque, which means that alpha = 1.0. All of the bits in each mask must be contiguous and fit in the specified number of least significant bits of an int pixel representation. Alpha, if present, is not premultiplied. The ColorSpace is the default sRGB space. The transparency value is Transparency.OPAQUE if no alpha is present, or Transparency.TRANSLUCENT otherwise. The transfer type is the smallest of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, or DataBuffer.TYPE_INT that can hold a single pixel.
Params:
  • bits – the number of bits in the pixel values; for example, the sum of the number of bits in the masks.
  • rmask – specifies a mask indicating which bits in an integer pixel contain the red component
  • gmask – specifies a mask indicating which bits in an integer pixel contain the green component
  • bmask – specifies a mask indicating which bits in an integer pixel contain the blue component
  • amask – specifies a mask indicating which bits in an integer pixel contain the alpha component
/** * Constructs a {@code DirectColorModel} from the specified masks * that indicate which bits in an {@code int} pixel representation * contain the red, green and blue color samples and the alpha sample, * if present. If {@code amask} is 0, pixel values do not contain * alpha information and all pixels are treated as opaque, which means * that alpha&nbsp;=&nbsp;1.0. All of the bits in each mask must * be contiguous and fit in the specified number of least significant bits * of an {@code int} pixel representation. Alpha, if present, is not * premultiplied. The {@code ColorSpace} is the default sRGB space. * The transparency value is Transparency.OPAQUE if no alpha is * present, or Transparency.TRANSLUCENT otherwise. The transfer type * is the smallest of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, * or DataBuffer.TYPE_INT that can hold a single pixel. * @param bits the number of bits in the pixel values; for example, * the sum of the number of bits in the masks. * @param rmask specifies a mask indicating which bits in an * integer pixel contain the red component * @param gmask specifies a mask indicating which bits in an * integer pixel contain the green component * @param bmask specifies a mask indicating which bits in an * integer pixel contain the blue component * @param amask specifies a mask indicating which bits in an * integer pixel contain the alpha component */
public DirectColorModel(int bits, int rmask, int gmask, int bmask, int amask) { super (ColorSpace.getInstance(ColorSpace.CS_sRGB), bits, rmask, gmask, bmask, amask, false, amask == 0 ? Transparency.OPAQUE : Transparency.TRANSLUCENT, ColorModel.getDefaultTransferType(bits)); setFields(); }
Constructs a DirectColorModel from the specified parameters. Color components are in the specified ColorSpace, which must be of type ColorSpace.TYPE_RGB and have minimum normalized component values which are all 0.0 and maximum values which are all 1.0. The masks specify which bits in an int pixel representation contain the red, green and blue color samples and the alpha sample, if present. If amask is 0, pixel values do not contain alpha information and all pixels are treated as opaque, which means that alpha = 1.0. All of the bits in each mask must be contiguous and fit in the specified number of least significant bits of an int pixel representation. If there is alpha, the boolean isAlphaPremultiplied specifies how to interpret color and alpha samples in pixel values. If the boolean is true, color samples are assumed to have been multiplied by the alpha sample. The transparency value is Transparency.OPAQUE, if no alpha is present, or Transparency.TRANSLUCENT otherwise. The transfer type is the type of primitive array used to represent pixel values and must be one of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, or DataBuffer.TYPE_INT.
Params:
  • space – the specified ColorSpace
  • bits – the number of bits in the pixel values; for example, the sum of the number of bits in the masks.
  • rmask – specifies a mask indicating which bits in an integer pixel contain the red component
  • gmask – specifies a mask indicating which bits in an integer pixel contain the green component
  • bmask – specifies a mask indicating which bits in an integer pixel contain the blue component
  • amask – specifies a mask indicating which bits in an integer pixel contain the alpha component
  • isAlphaPremultiplied – true if color samples are premultiplied by the alpha sample; false otherwise
  • transferType – the type of array used to represent pixel values
Throws:
  • IllegalArgumentException – if space is not a TYPE_RGB space or if the min/max normalized component values are not 0.0/1.0.
/** * Constructs a {@code DirectColorModel} from the specified * parameters. Color components are in the specified * {@code ColorSpace}, which must be of type ColorSpace.TYPE_RGB * and have minimum normalized component values which are all 0.0 * and maximum values which are all 1.0. * The masks specify which bits in an {@code int} pixel * representation contain the red, green and blue color samples and * the alpha sample, if present. If {@code amask} is 0, pixel * values do not contain alpha information and all pixels are treated * as opaque, which means that alpha&nbsp;=&nbsp;1.0. All of the * bits in each mask must be contiguous and fit in the specified number * of least significant bits of an {@code int} pixel * representation. If there is alpha, the {@code boolean} * {@code isAlphaPremultiplied} specifies how to interpret * color and alpha samples in pixel values. If the {@code boolean} * is {@code true}, color samples are assumed to have been * multiplied by the alpha sample. The transparency value is * Transparency.OPAQUE, if no alpha is present, or * Transparency.TRANSLUCENT otherwise. The transfer type * is the type of primitive array used to represent pixel values and * must be one of DataBuffer.TYPE_BYTE, DataBuffer.TYPE_USHORT, or * DataBuffer.TYPE_INT. * @param space the specified {@code ColorSpace} * @param bits the number of bits in the pixel values; for example, * the sum of the number of bits in the masks. * @param rmask specifies a mask indicating which bits in an * integer pixel contain the red component * @param gmask specifies a mask indicating which bits in an * integer pixel contain the green component * @param bmask specifies a mask indicating which bits in an * integer pixel contain the blue component * @param amask specifies a mask indicating which bits in an * integer pixel contain the alpha component * @param isAlphaPremultiplied {@code true} if color samples are * premultiplied by the alpha sample; {@code false} otherwise * @param transferType the type of array used to represent pixel values * @throws IllegalArgumentException if {@code space} is not a * TYPE_RGB space or if the min/max normalized component * values are not 0.0/1.0. */
public DirectColorModel(ColorSpace space, int bits, int rmask, int gmask, int bmask, int amask, boolean isAlphaPremultiplied, int transferType) { super (space, bits, rmask, gmask, bmask, amask, isAlphaPremultiplied, amask == 0 ? Transparency.OPAQUE : Transparency.TRANSLUCENT, transferType); if (ColorModel.isLinearRGBspace(colorSpace)) { is_LinearRGB = true; if (maxBits <= 8) { lRGBprecision = 8; tosRGB8LUT = ColorModel.getLinearRGB8TosRGB8LUT(); fromsRGB8LUT8 = ColorModel.getsRGB8ToLinearRGB8LUT(); } else { lRGBprecision = 16; tosRGB8LUT = ColorModel.getLinearRGB16TosRGB8LUT(); fromsRGB8LUT16 = ColorModel.getsRGB8ToLinearRGB16LUT(); } } else if (!is_sRGB) { for (int i = 0; i < 3; i++) { // super constructor checks that space is TYPE_RGB // check here that min/max are all 0.0/1.0 if ((space.getMinValue(i) != 0.0f) || (space.getMaxValue(i) != 1.0f)) { throw new IllegalArgumentException( "Illegal min/max RGB component value"); } } } setFields(); }
Returns the mask indicating which bits in an int pixel representation contain the red color component.
Returns:the mask, which indicates which bits of the int pixel representation contain the red color sample.
/** * Returns the mask indicating which bits in an {@code int} pixel * representation contain the red color component. * @return the mask, which indicates which bits of the {@code int} * pixel representation contain the red color sample. */
public final int getRedMask() { return maskArray[0]; }
Returns the mask indicating which bits in an int pixel representation contain the green color component.
Returns:the mask, which indicates which bits of the int pixel representation contain the green color sample.
/** * Returns the mask indicating which bits in an {@code int} pixel * representation contain the green color component. * @return the mask, which indicates which bits of the {@code int} * pixel representation contain the green color sample. */
public final int getGreenMask() { return maskArray[1]; }
Returns the mask indicating which bits in an int pixel representation contain the blue color component.
Returns:the mask, which indicates which bits of the int pixel representation contain the blue color sample.
/** * Returns the mask indicating which bits in an {@code int} pixel * representation contain the blue color component. * @return the mask, which indicates which bits of the {@code int} * pixel representation contain the blue color sample. */
public final int getBlueMask() { return maskArray[2]; }
Returns the mask indicating which bits in an int pixel representation contain the alpha component.
Returns:the mask, which indicates which bits of the int pixel representation contain the alpha sample.
/** * Returns the mask indicating which bits in an {@code int} pixel * representation contain the alpha component. * @return the mask, which indicates which bits of the {@code int} * pixel representation contain the alpha sample. */
public final int getAlphaMask() { if (supportsAlpha) { return maskArray[3]; } else { return 0; } } /* * Given an int pixel in this ColorModel's ColorSpace, converts * it to the default sRGB ColorSpace and returns the R, G, and B * components as float values between 0.0 and 1.0. */ private float[] getDefaultRGBComponents(int pixel) { int components[] = getComponents(pixel, null, 0); float norm[] = getNormalizedComponents(components, 0, null, 0); // Note that getNormalizedComponents returns non-premultiplied values return colorSpace.toRGB(norm); } private int getsRGBComponentFromsRGB(int pixel, int idx) { int c = ((pixel & maskArray[idx]) >>> maskOffsets[idx]); if (isAlphaPremultiplied) { int a = ((pixel & maskArray[3]) >>> maskOffsets[3]); c = (a == 0) ? 0 : (int) (((c * scaleFactors[idx]) * 255.0f / (a * scaleFactors[3])) + 0.5f); } else if (scaleFactors[idx] != 1.0f) { c = (int) ((c * scaleFactors[idx]) + 0.5f); } return c; } private int getsRGBComponentFromLinearRGB(int pixel, int idx) { int c = ((pixel & maskArray[idx]) >>> maskOffsets[idx]); if (isAlphaPremultiplied) { float factor = (float) ((1 << lRGBprecision) - 1); int a = ((pixel & maskArray[3]) >>> maskOffsets[3]); c = (a == 0) ? 0 : (int) (((c * scaleFactors[idx]) * factor / (a * scaleFactors[3])) + 0.5f); } else if (nBits[idx] != lRGBprecision) { if (lRGBprecision == 16) { c = (int) ((c * scaleFactors[idx] * 257.0f) + 0.5f); } else { c = (int) ((c * scaleFactors[idx]) + 0.5f); } } // now range of c is 0-255 or 0-65535, depending on lRGBprecision return tosRGB8LUT[c] & 0xff; }
Returns the red color component for the specified pixel, scaled from 0 to 255 in the default RGB ColorSpace, sRGB. A color conversion is done if necessary. The pixel value is specified as an int. The returned value is a non pre-multiplied value. Thus, if the alpha is premultiplied, this method divides it out before returning the value. If the alpha value is 0, for example, the red value is 0.
Params:
  • pixel – the specified pixel
Returns:the red color component for the specified pixel, from 0 to 255 in the sRGB ColorSpace.
/** * Returns the red color component for the specified pixel, scaled * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB. A * color conversion is done if necessary. The pixel value is specified * as an {@code int}. * The returned value is a non pre-multiplied value. Thus, if the * alpha is premultiplied, this method divides it out before returning * the value. If the alpha value is 0, for example, the red value * is 0. * @param pixel the specified pixel * @return the red color component for the specified pixel, from * 0 to 255 in the sRGB {@code ColorSpace}. */
public final int getRed(int pixel) { if (is_sRGB) { return getsRGBComponentFromsRGB(pixel, 0); } else if (is_LinearRGB) { return getsRGBComponentFromLinearRGB(pixel, 0); } float rgb[] = getDefaultRGBComponents(pixel); return (int) (rgb[0] * 255.0f + 0.5f); }
Returns the green color component for the specified pixel, scaled from 0 to 255 in the default RGB ColorSpace, sRGB. A color conversion is done if necessary. The pixel value is specified as an int. The returned value is a non pre-multiplied value. Thus, if the alpha is premultiplied, this method divides it out before returning the value. If the alpha value is 0, for example, the green value is 0.
Params:
  • pixel – the specified pixel
Returns:the green color component for the specified pixel, from 0 to 255 in the sRGB ColorSpace.
/** * Returns the green color component for the specified pixel, scaled * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB. A * color conversion is done if necessary. The pixel value is specified * as an {@code int}. * The returned value is a non pre-multiplied value. Thus, if the * alpha is premultiplied, this method divides it out before returning * the value. If the alpha value is 0, for example, the green value * is 0. * @param pixel the specified pixel * @return the green color component for the specified pixel, from * 0 to 255 in the sRGB {@code ColorSpace}. */
public final int getGreen(int pixel) { if (is_sRGB) { return getsRGBComponentFromsRGB(pixel, 1); } else if (is_LinearRGB) { return getsRGBComponentFromLinearRGB(pixel, 1); } float rgb[] = getDefaultRGBComponents(pixel); return (int) (rgb[1] * 255.0f + 0.5f); }
Returns the blue color component for the specified pixel, scaled from 0 to 255 in the default RGB ColorSpace, sRGB. A color conversion is done if necessary. The pixel value is specified as an int. The returned value is a non pre-multiplied value. Thus, if the alpha is premultiplied, this method divides it out before returning the value. If the alpha value is 0, for example, the blue value is 0.
Params:
  • pixel – the specified pixel
Returns:the blue color component for the specified pixel, from 0 to 255 in the sRGB ColorSpace.
/** * Returns the blue color component for the specified pixel, scaled * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB. A * color conversion is done if necessary. The pixel value is specified * as an {@code int}. * The returned value is a non pre-multiplied value. Thus, if the * alpha is premultiplied, this method divides it out before returning * the value. If the alpha value is 0, for example, the blue value * is 0. * @param pixel the specified pixel * @return the blue color component for the specified pixel, from * 0 to 255 in the sRGB {@code ColorSpace}. */
public final int getBlue(int pixel) { if (is_sRGB) { return getsRGBComponentFromsRGB(pixel, 2); } else if (is_LinearRGB) { return getsRGBComponentFromLinearRGB(pixel, 2); } float rgb[] = getDefaultRGBComponents(pixel); return (int) (rgb[2] * 255.0f + 0.5f); }
Returns the alpha component for the specified pixel, scaled from 0 to 255. The pixel value is specified as an int.
Params:
  • pixel – the specified pixel
Returns:the value of the alpha component of pixel from 0 to 255.
/** * Returns the alpha component for the specified pixel, scaled * from 0 to 255. The pixel value is specified as an {@code int}. * @param pixel the specified pixel * @return the value of the alpha component of {@code pixel} * from 0 to 255. */
public final int getAlpha(int pixel) { if (!supportsAlpha) return 255; int a = ((pixel & maskArray[3]) >>> maskOffsets[3]); if (scaleFactors[3] != 1.0f) { a = (int)(a * scaleFactors[3] + 0.5f); } return a; }
Returns the color/alpha components of the pixel in the default RGB color model format. A color conversion is done if necessary. The pixel value is specified as an int. The returned value is in a non pre-multiplied format. Thus, if the alpha is premultiplied, this method divides it out of the color components. If the alpha value is 0, for example, the color values are each 0.
Params:
  • pixel – the specified pixel
See Also:
Returns:the RGB value of the color/alpha components of the specified pixel.
/** * Returns the color/alpha components of the pixel in the default * RGB color model format. A color conversion is done if necessary. * The pixel value is specified as an {@code int}. * The returned value is in a non pre-multiplied format. Thus, if * the alpha is premultiplied, this method divides it out of the * color components. If the alpha value is 0, for example, the color * values are each 0. * @param pixel the specified pixel * @return the RGB value of the color/alpha components of the specified * pixel. * @see ColorModel#getRGBdefault */
public final int getRGB(int pixel) { if (is_sRGB || is_LinearRGB) { return (getAlpha(pixel) << 24) | (getRed(pixel) << 16) | (getGreen(pixel) << 8) | (getBlue(pixel) << 0); } float rgb[] = getDefaultRGBComponents(pixel); return (getAlpha(pixel) << 24) | (((int) (rgb[0] * 255.0f + 0.5f)) << 16) | (((int) (rgb[1] * 255.0f + 0.5f)) << 8) | (((int) (rgb[2] * 255.0f + 0.5f)) << 0); }
Returns the red color component for the specified pixel, scaled from 0 to 255 in the default RGB ColorSpace, sRGB. A color conversion is done if necessary. The pixel value is specified by an array of data elements of type transferType passed in as an object reference. The returned value is a non pre-multiplied value. Thus, if the alpha is premultiplied, this method divides it out before returning the value. If the alpha value is 0, for example, the red value is 0. If inData is not a primitive array of type transferType, a ClassCastException is thrown. An ArrayIndexOutOfBoundsException is thrown if inData is not large enough to hold a pixel value for this ColorModel. Since DirectColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType. An UnsupportedOperationException is thrown if this transferType is not supported by this ColorModel.
Params:
  • inData – the array containing the pixel value
Throws:
Returns:the value of the red component of the specified pixel.
/** * Returns the red color component for the specified pixel, scaled * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB. A * color conversion is done if necessary. The pixel value is specified * by an array of data elements of type {@code transferType} passed * in as an object reference. * The returned value is a non pre-multiplied value. Thus, if the * alpha is premultiplied, this method divides it out before returning * the value. If the alpha value is 0, for example, the red value * is 0. * If {@code inData} is not a primitive array of type * {@code transferType}, a {@code ClassCastException} is * thrown. An {@code ArrayIndexOutOfBoundsException} is * thrown if {@code inData} is not large enough to hold a * pixel value for this {@code ColorModel}. Since * {@code DirectColorModel} can be subclassed, subclasses inherit * the implementation of this method and if they don't override it * then they throw an exception if they use an unsupported * {@code transferType}. * An {@code UnsupportedOperationException} is thrown if this * {@code transferType} is not supported by this * {@code ColorModel}. * @param inData the array containing the pixel value * @return the value of the red component of the specified pixel. * @throws ArrayIndexOutOfBoundsException if {@code inData} is not * large enough to hold a pixel value for this color model * @throws ClassCastException if {@code inData} is not a * primitive array of type {@code transferType} * @throws UnsupportedOperationException if this {@code transferType} * is not supported by this color model */
public int getRed(Object inData) { int pixel=0; switch (transferType) { case DataBuffer.TYPE_BYTE: byte bdata[] = (byte[])inData; pixel = bdata[0] & 0xff; break; case DataBuffer.TYPE_USHORT: short sdata[] = (short[])inData; pixel = sdata[0] & 0xffff; break; case DataBuffer.TYPE_INT: int idata[] = (int[])inData; pixel = idata[0]; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return getRed(pixel); }
Returns the green color component for the specified pixel, scaled from 0 to 255 in the default RGB ColorSpace, sRGB. A color conversion is done if necessary. The pixel value is specified by an array of data elements of type transferType passed in as an object reference. The returned value is a non pre-multiplied value. Thus, if the alpha is premultiplied, this method divides it out before returning the value. If the alpha value is 0, for example, the green value is 0. If inData is not a primitive array of type transferType, a ClassCastException is thrown. An ArrayIndexOutOfBoundsException is thrown if inData is not large enough to hold a pixel value for this ColorModel. Since DirectColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType. An UnsupportedOperationException is thrown if this transferType is not supported by this ColorModel.
Params:
  • inData – the array containing the pixel value
Throws:
Returns:the value of the green component of the specified pixel.
/** * Returns the green color component for the specified pixel, scaled * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB. A * color conversion is done if necessary. The pixel value is specified * by an array of data elements of type {@code transferType} passed * in as an object reference. * The returned value is a non pre-multiplied value. Thus, if the * alpha is premultiplied, this method divides it out before returning * the value. If the alpha value is 0, for example, the green value * is 0. If {@code inData} is not a primitive array of type * {@code transferType}, a {@code ClassCastException} is thrown. * An {@code ArrayIndexOutOfBoundsException} is * thrown if {@code inData} is not large enough to hold a pixel * value for this {@code ColorModel}. Since * {@code DirectColorModel} can be subclassed, subclasses inherit * the implementation of this method and if they don't override it * then they throw an exception if they use an unsupported * {@code transferType}. * An {@code UnsupportedOperationException} is * thrown if this {@code transferType} is not supported by this * {@code ColorModel}. * @param inData the array containing the pixel value * @return the value of the green component of the specified pixel. * @throws ArrayIndexOutOfBoundsException if {@code inData} is not * large enough to hold a pixel value for this color model * @throws ClassCastException if {@code inData} is not a * primitive array of type {@code transferType} * @throws UnsupportedOperationException if this {@code transferType} * is not supported by this color model */
public int getGreen(Object inData) { int pixel=0; switch (transferType) { case DataBuffer.TYPE_BYTE: byte bdata[] = (byte[])inData; pixel = bdata[0] & 0xff; break; case DataBuffer.TYPE_USHORT: short sdata[] = (short[])inData; pixel = sdata[0] & 0xffff; break; case DataBuffer.TYPE_INT: int idata[] = (int[])inData; pixel = idata[0]; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return getGreen(pixel); }
Returns the blue color component for the specified pixel, scaled from 0 to 255 in the default RGB ColorSpace, sRGB. A color conversion is done if necessary. The pixel value is specified by an array of data elements of type transferType passed in as an object reference. The returned value is a non pre-multiplied value. Thus, if the alpha is premultiplied, this method divides it out before returning the value. If the alpha value is 0, for example, the blue value is 0. If inData is not a primitive array of type transferType, a ClassCastException is thrown. An ArrayIndexOutOfBoundsException is thrown if inData is not large enough to hold a pixel value for this ColorModel. Since DirectColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType. An UnsupportedOperationException is thrown if this transferType is not supported by this ColorModel.
Params:
  • inData – the array containing the pixel value
Throws:
Returns:the value of the blue component of the specified pixel.
/** * Returns the blue color component for the specified pixel, scaled * from 0 to 255 in the default RGB {@code ColorSpace}, sRGB. A * color conversion is done if necessary. The pixel value is specified * by an array of data elements of type {@code transferType} passed * in as an object reference. * The returned value is a non pre-multiplied value. Thus, if the * alpha is premultiplied, this method divides it out before returning * the value. If the alpha value is 0, for example, the blue value * is 0. If {@code inData} is not a primitive array of type * {@code transferType}, a {@code ClassCastException} is thrown. * An {@code ArrayIndexOutOfBoundsException} is * thrown if {@code inData} is not large enough to hold a pixel * value for this {@code ColorModel}. Since * {@code DirectColorModel} can be subclassed, subclasses inherit * the implementation of this method and if they don't override it * then they throw an exception if they use an unsupported * {@code transferType}. * An {@code UnsupportedOperationException} is * thrown if this {@code transferType} is not supported by this * {@code ColorModel}. * @param inData the array containing the pixel value * @return the value of the blue component of the specified pixel. * @throws ArrayIndexOutOfBoundsException if {@code inData} is not * large enough to hold a pixel value for this color model * @throws ClassCastException if {@code inData} is not a * primitive array of type {@code transferType} * @throws UnsupportedOperationException if this {@code transferType} * is not supported by this color model */
public int getBlue(Object inData) { int pixel=0; switch (transferType) { case DataBuffer.TYPE_BYTE: byte bdata[] = (byte[])inData; pixel = bdata[0] & 0xff; break; case DataBuffer.TYPE_USHORT: short sdata[] = (short[])inData; pixel = sdata[0] & 0xffff; break; case DataBuffer.TYPE_INT: int idata[] = (int[])inData; pixel = idata[0]; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return getBlue(pixel); }
Returns the alpha component for the specified pixel, scaled from 0 to 255. The pixel value is specified by an array of data elements of type transferType passed in as an object reference. If inData is not a primitive array of type transferType, a ClassCastException is thrown. An ArrayIndexOutOfBoundsException is thrown if inData is not large enough to hold a pixel value for this ColorModel. Since DirectColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType. If this transferType is not supported, an UnsupportedOperationException is thrown.
Params:
  • inData – the specified pixel
Throws:
Returns:the alpha component of the specified pixel, scaled from 0 to 255.
/** * Returns the alpha component for the specified pixel, scaled * from 0 to 255. The pixel value is specified by an array of data * elements of type {@code transferType} passed in as an object * reference. * If {@code inData} is not a primitive array of type * {@code transferType}, a {@code ClassCastException} is * thrown. An {@code ArrayIndexOutOfBoundsException} is * thrown if {@code inData} is not large enough to hold a pixel * value for this {@code ColorModel}. Since * {@code DirectColorModel} can be subclassed, subclasses inherit * the implementation of this method and if they don't override it * then they throw an exception if they use an unsupported * {@code transferType}. * If this {@code transferType} is not supported, an * {@code UnsupportedOperationException} is thrown. * @param inData the specified pixel * @return the alpha component of the specified pixel, scaled from * 0 to 255. * @exception ClassCastException if {@code inData} * is not a primitive array of type {@code transferType} * @exception ArrayIndexOutOfBoundsException if * {@code inData} is not large enough to hold a pixel value * for this {@code ColorModel} * @exception UnsupportedOperationException if this * {@code tranferType} is not supported by this * {@code ColorModel} */
public int getAlpha(Object inData) { int pixel=0; switch (transferType) { case DataBuffer.TYPE_BYTE: byte bdata[] = (byte[])inData; pixel = bdata[0] & 0xff; break; case DataBuffer.TYPE_USHORT: short sdata[] = (short[])inData; pixel = sdata[0] & 0xffff; break; case DataBuffer.TYPE_INT: int idata[] = (int[])inData; pixel = idata[0]; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return getAlpha(pixel); }
Returns the color/alpha components for the specified pixel in the default RGB color model format. A color conversion is done if necessary. The pixel value is specified by an array of data elements of type transferType passed in as an object reference. If inData is not a primitive array of type transferType, a ClassCastException is thrown. An ArrayIndexOutOfBoundsException is thrown if inData is not large enough to hold a pixel value for this ColorModel. The returned value is in a non pre-multiplied format. Thus, if the alpha is premultiplied, this method divides it out of the color components. If the alpha value is 0, for example, the color values is 0. Since DirectColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType.
Params:
  • inData – the specified pixel
Throws:
See Also:
Returns:the color and alpha components of the specified pixel.
/** * Returns the color/alpha components for the specified pixel in the * default RGB color model format. A color conversion is done if * necessary. The pixel value is specified by an array of data * elements of type {@code transferType} passed in as an object * reference. If {@code inData} is not a primitive array of type * {@code transferType}, a {@code ClassCastException} is * thrown. An {@code ArrayIndexOutOfBoundsException} is * thrown if {@code inData} is not large enough to hold a pixel * value for this {@code ColorModel}. * The returned value is in a non pre-multiplied format. Thus, if * the alpha is premultiplied, this method divides it out of the * color components. If the alpha value is 0, for example, the color * values is 0. Since {@code DirectColorModel} can be * subclassed, subclasses inherit the implementation of this method * and if they don't override it then * they throw an exception if they use an unsupported * {@code transferType}. * * @param inData the specified pixel * @return the color and alpha components of the specified pixel. * @exception UnsupportedOperationException if this * {@code transferType} is not supported by this * {@code ColorModel} * @see ColorModel#getRGBdefault */
public int getRGB(Object inData) { int pixel=0; switch (transferType) { case DataBuffer.TYPE_BYTE: byte bdata[] = (byte[])inData; pixel = bdata[0] & 0xff; break; case DataBuffer.TYPE_USHORT: short sdata[] = (short[])inData; pixel = sdata[0] & 0xffff; break; case DataBuffer.TYPE_INT: int idata[] = (int[])inData; pixel = idata[0]; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return getRGB(pixel); }
Returns a data element array representation of a pixel in this ColorModel, given an integer pixel representation in the default RGB color model. This array can then be passed to the setDataElements method of a WritableRaster object. If the pixel variable is null, a new array is allocated. If pixel is not null, it must be a primitive array of type transferType; otherwise, a ClassCastException is thrown. An ArrayIndexOutOfBoundsException is thrown if pixel is not large enough to hold a pixel value for this ColorModel. The pixel array is returned. Since DirectColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType.
Params:
  • rgb – the integer pixel representation in the default RGB color model
  • pixel – the specified pixel
Throws:
See Also:
Returns:an array representation of the specified pixel in this ColorModel
/** * Returns a data element array representation of a pixel in this * {@code ColorModel}, given an integer pixel representation in the * default RGB color model. * This array can then be passed to the {@code setDataElements} * method of a {@code WritableRaster} object. If the pixel variable * is {@code null}, a new array is allocated. If {@code pixel} * is not {@code null}, it must be a primitive array of type * {@code transferType}; otherwise, a * {@code ClassCastException} is thrown. An * {@code ArrayIndexOutOfBoundsException} is * thrown if {@code pixel} is not large enough to hold a pixel * value for this {@code ColorModel}. The pixel array is returned. * Since {@code DirectColorModel} can be subclassed, subclasses * inherit the implementation of this method and if they don't * override it then they throw an exception if they use an unsupported * {@code transferType}. * * @param rgb the integer pixel representation in the default RGB * color model * @param pixel the specified pixel * @return an array representation of the specified pixel in this * {@code ColorModel} * @exception ClassCastException if {@code pixel} * is not a primitive array of type {@code transferType} * @exception ArrayIndexOutOfBoundsException if * {@code pixel} is not large enough to hold a pixel value * for this {@code ColorModel} * @exception UnsupportedOperationException if this * {@code transferType} is not supported by this * {@code ColorModel} * @see WritableRaster#setDataElements * @see SampleModel#setDataElements */
public Object getDataElements(int rgb, Object pixel) { //REMIND: maybe more efficient not to use int array for //DataBuffer.TYPE_USHORT and DataBuffer.TYPE_INT int intpixel[] = null; if (transferType == DataBuffer.TYPE_INT && pixel != null) { intpixel = (int[])pixel; intpixel[0] = 0; } else { intpixel = new int[1]; } ColorModel defaultCM = ColorModel.getRGBdefault(); if (this == defaultCM || equals(defaultCM)) { intpixel[0] = rgb; return intpixel; } int red, grn, blu, alp; red = (rgb>>16) & 0xff; grn = (rgb>>8) & 0xff; blu = rgb & 0xff; if (is_sRGB || is_LinearRGB) { int precision; float factor; if (is_LinearRGB) { if (lRGBprecision == 8) { red = fromsRGB8LUT8[red] & 0xff; grn = fromsRGB8LUT8[grn] & 0xff; blu = fromsRGB8LUT8[blu] & 0xff; precision = 8; factor = 1.0f / 255.0f; } else { red = fromsRGB8LUT16[red] & 0xffff; grn = fromsRGB8LUT16[grn] & 0xffff; blu = fromsRGB8LUT16[blu] & 0xffff; precision = 16; factor = 1.0f / 65535.0f; } } else { precision = 8; factor = 1.0f / 255.0f; } if (supportsAlpha) { alp = (rgb>>24) & 0xff; if (isAlphaPremultiplied) { factor *= (alp * (1.0f / 255.0f)); precision = -1; // force component calculations below } if (nBits[3] != 8) { alp = (int) ((alp * (1.0f / 255.0f) * ((1<<nBits[3]) - 1)) + 0.5f); if (alp > ((1<<nBits[3]) - 1)) { // fix 4412670 - see comment below alp = (1<<nBits[3]) - 1; } } intpixel[0] = alp << maskOffsets[3]; } if (nBits[0] != precision) { red = (int) ((red * factor * ((1<<nBits[0]) - 1)) + 0.5f); } if (nBits[1] != precision) { grn = (int) ((grn * factor * ((1<<nBits[1]) - 1)) + 0.5f); } if (nBits[2] != precision) { blu = (int) ((blu * factor * ((1<<nBits[2]) - 1)) + 0.5f); } } else { // Need to convert the color float[] norm = new float[3]; float factor = 1.0f / 255.0f; norm[0] = red * factor; norm[1] = grn * factor; norm[2] = blu * factor; norm = colorSpace.fromRGB(norm); if (supportsAlpha) { alp = (rgb>>24) & 0xff; if (isAlphaPremultiplied) { factor *= alp; for (int i = 0; i < 3; i++) { norm[i] *= factor; } } if (nBits[3] != 8) { alp = (int) ((alp * (1.0f / 255.0f) * ((1<<nBits[3]) - 1)) + 0.5f); if (alp > ((1<<nBits[3]) - 1)) { // fix 4412670 - see comment below alp = (1<<nBits[3]) - 1; } } intpixel[0] = alp << maskOffsets[3]; } red = (int) ((norm[0] * ((1<<nBits[0]) - 1)) + 0.5f); grn = (int) ((norm[1] * ((1<<nBits[1]) - 1)) + 0.5f); blu = (int) ((norm[2] * ((1<<nBits[2]) - 1)) + 0.5f); } if (maxBits > 23) { // fix 4412670 - for components of 24 or more bits // some calculations done above with float precision // may lose enough precision that the integer result // overflows nBits, so we need to clamp. if (red > ((1<<nBits[0]) - 1)) { red = (1<<nBits[0]) - 1; } if (grn > ((1<<nBits[1]) - 1)) { grn = (1<<nBits[1]) - 1; } if (blu > ((1<<nBits[2]) - 1)) { blu = (1<<nBits[2]) - 1; } } intpixel[0] |= (red << maskOffsets[0]) | (grn << maskOffsets[1]) | (blu << maskOffsets[2]); switch (transferType) { case DataBuffer.TYPE_BYTE: { byte bdata[]; if (pixel == null) { bdata = new byte[1]; } else { bdata = (byte[])pixel; } bdata[0] = (byte)(0xff&intpixel[0]); return bdata; } case DataBuffer.TYPE_USHORT:{ short sdata[]; if (pixel == null) { sdata = new short[1]; } else { sdata = (short[])pixel; } sdata[0] = (short)(intpixel[0]&0xffff); return sdata; } case DataBuffer.TYPE_INT: return intpixel; } throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); }
Returns an array of unnormalized color/alpha components given a pixel in this ColorModel. The pixel value is specified as an int. If the components array is null, a new array is allocated. The components array is returned. Color/alpha components are stored in the components array starting at offset, even if the array is allocated by this method. An ArrayIndexOutOfBoundsException is thrown if the components array is not null and is not large enough to hold all the color and alpha components, starting at offset.
Params:
  • pixel – the specified pixel
  • components – the array to receive the color and alpha components of the specified pixel
  • offset – the offset into the components array at which to start storing the color and alpha components
Returns:an array containing the color and alpha components of the specified pixel starting at the specified offset.
/** * Returns an array of unnormalized color/alpha components given a pixel * in this {@code ColorModel}. The pixel value is specified as an * {@code int}. If the {@code components} array is * {@code null}, a new array is allocated. The * {@code components} array is returned. Color/alpha components are * stored in the {@code components} array starting at * {@code offset}, even if the array is allocated by this method. * An {@code ArrayIndexOutOfBoundsException} is thrown if the * {@code components} array is not {@code null} and is not large * enough to hold all the color and alpha components, starting at * {@code offset}. * @param pixel the specified pixel * @param components the array to receive the color and alpha * components of the specified pixel * @param offset the offset into the {@code components} array at * which to start storing the color and alpha components * @return an array containing the color and alpha components of the * specified pixel starting at the specified offset. */
public final int[] getComponents(int pixel, int[] components, int offset) { if (components == null) { components = new int[offset+numComponents]; } for (int i=0; i < numComponents; i++) { components[offset+i] = (pixel & maskArray[i]) >>> maskOffsets[i]; } return components; }
Returns an array of unnormalized color/alpha components given a pixel in this ColorModel. The pixel value is specified by an array of data elements of type transferType passed in as an object reference. If pixel is not a primitive array of type transferType, a ClassCastException is thrown. An ArrayIndexOutOfBoundsException is thrown if pixel is not large enough to hold a pixel value for this ColorModel. If the components array is null, a new array is allocated. The components array is returned. Color/alpha components are stored in the components array starting at offset, even if the array is allocated by this method. An ArrayIndexOutOfBoundsException is thrown if the components array is not null and is not large enough to hold all the color and alpha components, starting at offset. Since DirectColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType.
Params:
  • pixel – the specified pixel
  • components – the array to receive the color and alpha components of the specified pixel
  • offset – the offset into the components array at which to start storing the color and alpha components
Throws:
  • ClassCastException – if pixel is not a primitive array of type transferType
  • ArrayIndexOutOfBoundsException – if pixel is not large enough to hold a pixel value for this ColorModel, or if components is not null and is not large enough to hold all the color and alpha components, starting at offset
  • UnsupportedOperationException – if this transferType is not supported by this color model
Returns:an array containing the color and alpha components of the specified pixel starting at the specified offset.
/** * Returns an array of unnormalized color/alpha components given a pixel * in this {@code ColorModel}. The pixel value is specified by an * array of data elements of type {@code transferType} passed in as * an object reference. If {@code pixel} is not a primitive array * of type {@code transferType}, a {@code ClassCastException} * is thrown. An {@code ArrayIndexOutOfBoundsException} is * thrown if {@code pixel} is not large enough to hold a * pixel value for this {@code ColorModel}. If the * {@code components} array is {@code null}, a new * array is allocated. The {@code components} array is returned. * Color/alpha components are stored in the {@code components} array * starting at {@code offset}, even if the array is allocated by * this method. An {@code ArrayIndexOutOfBoundsException} * is thrown if the {@code components} array is not * {@code null} and is not large enough to hold all the color and * alpha components, starting at {@code offset}. * Since {@code DirectColorModel} can be subclassed, subclasses * inherit the implementation of this method and if they don't * override it then they throw an exception if they use an unsupported * {@code transferType}. * @param pixel the specified pixel * @param components the array to receive the color and alpha * components of the specified pixel * @param offset the offset into the {@code components} array at * which to start storing the color and alpha components * @return an array containing the color and alpha components of the * specified pixel starting at the specified offset. * @exception ClassCastException if {@code pixel} * is not a primitive array of type {@code transferType} * @exception ArrayIndexOutOfBoundsException if * {@code pixel} is not large enough to hold a pixel value * for this {@code ColorModel}, or if {@code components} * is not {@code null} and is not large enough to hold all the * color and alpha components, starting at {@code offset} * @exception UnsupportedOperationException if this * {@code transferType} is not supported by this * color model */
public final int[] getComponents(Object pixel, int[] components, int offset) { int intpixel=0; switch (transferType) { case DataBuffer.TYPE_BYTE: byte bdata[] = (byte[])pixel; intpixel = bdata[0] & 0xff; break; case DataBuffer.TYPE_USHORT: short sdata[] = (short[])pixel; intpixel = sdata[0] & 0xffff; break; case DataBuffer.TYPE_INT: int idata[] = (int[])pixel; intpixel = idata[0]; break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } return getComponents(intpixel, components, offset); }
Creates a WritableRaster with the specified width and height that has a data layout (SampleModel) compatible with this ColorModel.
Params:
  • w – the width to apply to the new WritableRaster
  • h – the height to apply to the new WritableRaster
Throws:
See Also:
Returns:a WritableRaster object with the specified width and height.
/** * Creates a {@code WritableRaster} with the specified width and * height that has a data layout ({@code SampleModel}) compatible * with this {@code ColorModel}. * @param w the width to apply to the new {@code WritableRaster} * @param h the height to apply to the new {@code WritableRaster} * @return a {@code WritableRaster} object with the specified * width and height. * @throws IllegalArgumentException if {@code w} or {@code h} * is less than or equal to zero * @see WritableRaster * @see SampleModel */
public final WritableRaster createCompatibleWritableRaster (int w, int h) { if ((w <= 0) || (h <= 0)) { throw new IllegalArgumentException("Width (" + w + ") and height (" + h + ") cannot be <= 0"); } int[] bandmasks; if (supportsAlpha) { bandmasks = new int[4]; bandmasks[3] = alpha_mask; } else { bandmasks = new int[3]; } bandmasks[0] = red_mask; bandmasks[1] = green_mask; bandmasks[2] = blue_mask; if (pixel_bits > 16) { return Raster.createPackedRaster(DataBuffer.TYPE_INT, w,h,bandmasks,null); } else if (pixel_bits > 8) { return Raster.createPackedRaster(DataBuffer.TYPE_USHORT, w,h,bandmasks,null); } else { return Raster.createPackedRaster(DataBuffer.TYPE_BYTE, w,h,bandmasks,null); } }
Returns a pixel value represented as an int in this ColorModel, given an array of unnormalized color/alpha components. An ArrayIndexOutOfBoundsException is thrown if the components array is not large enough to hold all the color and alpha components, starting at offset.
Params:
  • components – an array of unnormalized color and alpha components
  • offset – the index into components at which to begin retrieving the color and alpha components
Throws:
Returns:an int pixel value in this ColorModel corresponding to the specified components.
/** * Returns a pixel value represented as an {@code int} in this * {@code ColorModel}, given an array of unnormalized color/alpha * components. An {@code ArrayIndexOutOfBoundsException} is * thrown if the {@code components} array is * not large enough to hold all the color and alpha components, starting * at {@code offset}. * @param components an array of unnormalized color and alpha * components * @param offset the index into {@code components} at which to * begin retrieving the color and alpha components * @return an {@code int} pixel value in this * {@code ColorModel} corresponding to the specified components. * @exception ArrayIndexOutOfBoundsException if * the {@code components} array is not large enough to * hold all of the color and alpha components starting at * {@code offset} */
public int getDataElement(int[] components, int offset) { int pixel = 0; for (int i=0; i < numComponents; i++) { pixel |= ((components[offset+i]<<maskOffsets[i])&maskArray[i]); } return pixel; }
Returns a data element array representation of a pixel in this ColorModel, given an array of unnormalized color/alpha components. This array can then be passed to the setDataElements method of a WritableRaster object. An ArrayIndexOutOfBoundsException is thrown if the components array is not large enough to hold all the color and alpha components, starting at offset. If the obj variable is null, a new array is allocated. If obj is not null, it must be a primitive array of type transferType; otherwise, a ClassCastException is thrown. An ArrayIndexOutOfBoundsException is thrown if obj is not large enough to hold a pixel value for this ColorModel. Since DirectColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType.
Params:
  • components – an array of unnormalized color and alpha components
  • offset – the index into components at which to begin retrieving color and alpha components
  • obj – the Object representing an array of color and alpha components
Throws:
See Also:
Returns:an Object representing an array of color and alpha components.
/** * Returns a data element array representation of a pixel in this * {@code ColorModel}, given an array of unnormalized color/alpha * components. * This array can then be passed to the {@code setDataElements} * method of a {@code WritableRaster} object. * An {@code ArrayIndexOutOfBoundsException} is thrown if the * {@code components} array * is not large enough to hold all the color and alpha components, * starting at offset. If the {@code obj} variable is * {@code null}, a new array is allocated. If {@code obj} is * not {@code null}, it must be a primitive array * of type {@code transferType}; otherwise, a * {@code ClassCastException} is thrown. * An {@code ArrayIndexOutOfBoundsException} is thrown if * {@code obj} is not large enough to hold a pixel value for this * {@code ColorModel}. * Since {@code DirectColorModel} can be subclassed, subclasses * inherit the implementation of this method and if they don't * override it then they throw an exception if they use an unsupported * {@code transferType}. * @param components an array of unnormalized color and alpha * components * @param offset the index into {@code components} at which to * begin retrieving color and alpha components * @param obj the {@code Object} representing an array of color * and alpha components * @return an {@code Object} representing an array of color and * alpha components. * @exception ClassCastException if {@code obj} * is not a primitive array of type {@code transferType} * @exception ArrayIndexOutOfBoundsException if * {@code obj} is not large enough to hold a pixel value * for this {@code ColorModel} or the {@code components} * array is not large enough to hold all of the color and alpha * components starting at {@code offset} * @exception UnsupportedOperationException if this * {@code transferType} is not supported by this * color model * @see WritableRaster#setDataElements * @see SampleModel#setDataElements */
public Object getDataElements(int[] components, int offset, Object obj) { int pixel = 0; for (int i=0; i < numComponents; i++) { pixel |= ((components[offset+i]<<maskOffsets[i])&maskArray[i]); } switch (transferType) { case DataBuffer.TYPE_BYTE: if (obj instanceof byte[]) { byte bdata[] = (byte[])obj; bdata[0] = (byte)(pixel&0xff); return bdata; } else { byte bdata[] = {(byte)(pixel&0xff)}; return bdata; } case DataBuffer.TYPE_USHORT: if (obj instanceof short[]) { short sdata[] = (short[])obj; sdata[0] = (short)(pixel&0xffff); return sdata; } else { short sdata[] = {(short)(pixel&0xffff)}; return sdata; } case DataBuffer.TYPE_INT: if (obj instanceof int[]) { int idata[] = (int[])obj; idata[0] = pixel; return idata; } else { int idata[] = {pixel}; return idata; } default: throw new ClassCastException("This method has not been "+ "implemented for transferType " + transferType); } }
Forces the raster data to match the state specified in the isAlphaPremultiplied variable, assuming the data is currently correctly described by this ColorModel. It may multiply or divide the color raster data by alpha, or do nothing if the data is in the correct state. If the data needs to be coerced, this method will also return an instance of this ColorModel with the isAlphaPremultiplied flag set appropriately. This method will throw a UnsupportedOperationException if this transferType is not supported by this ColorModel. Since ColorModel can be subclassed, subclasses inherit the implementation of this method and if they don't override it then they throw an exception if they use an unsupported transferType.
Params:
  • raster – the WritableRaster data
  • isAlphaPremultiplied – true if the alpha is premultiplied; false otherwise
Throws:
Returns:a ColorModel object that represents the coerced data.
/** * Forces the raster data to match the state specified in the * {@code isAlphaPremultiplied} variable, assuming the data is * currently correctly described by this {@code ColorModel}. It * may multiply or divide the color raster data by alpha, or do * nothing if the data is in the correct state. If the data needs to * be coerced, this method will also return an instance of this * {@code ColorModel} with the {@code isAlphaPremultiplied} * flag set appropriately. This method will throw a * {@code UnsupportedOperationException} if this transferType is * not supported by this {@code ColorModel}. Since * {@code ColorModel} can be subclassed, subclasses inherit the * implementation of this method and if they don't override it then * they throw an exception if they use an unsupported transferType. * * @param raster the {@code WritableRaster} data * @param isAlphaPremultiplied {@code true} if the alpha is * premultiplied; {@code false} otherwise * @return a {@code ColorModel} object that represents the * coerced data. * @exception UnsupportedOperationException if this * {@code transferType} is not supported by this * color model */
public final ColorModel coerceData (WritableRaster raster, boolean isAlphaPremultiplied) { if (!supportsAlpha || this.isAlphaPremultiplied() == isAlphaPremultiplied) { return this; } int w = raster.getWidth(); int h = raster.getHeight(); int aIdx = numColorComponents; float normAlpha; float alphaScale = 1.0f / ((float) ((1 << nBits[aIdx]) - 1)); int rminX = raster.getMinX(); int rY = raster.getMinY(); int rX; int pixel[] = null; int zpixel[] = null; if (isAlphaPremultiplied) { // Must mean that we are currently not premultiplied so // multiply by alpha switch (transferType) { case DataBuffer.TYPE_BYTE: { for (int y = 0; y < h; y++, rY++) { rX = rminX; for (int x = 0; x < w; x++, rX++) { pixel = raster.getPixel(rX, rY, pixel); normAlpha = pixel[aIdx] * alphaScale; if (normAlpha != 0.f) { for (int c=0; c < aIdx; c++) { pixel[c] = (int) (pixel[c] * normAlpha + 0.5f); } raster.setPixel(rX, rY, pixel); } else { if (zpixel == null) { zpixel = new int[numComponents]; java.util.Arrays.fill(zpixel, 0); } raster.setPixel(rX, rY, zpixel); } } } } break; case DataBuffer.TYPE_USHORT: { for (int y = 0; y < h; y++, rY++) { rX = rminX; for (int x = 0; x < w; x++, rX++) { pixel = raster.getPixel(rX, rY, pixel); normAlpha = pixel[aIdx] * alphaScale; if (normAlpha != 0.f) { for (int c=0; c < aIdx; c++) { pixel[c] = (int) (pixel[c] * normAlpha + 0.5f); } raster.setPixel(rX, rY, pixel); } else { if (zpixel == null) { zpixel = new int[numComponents]; java.util.Arrays.fill(zpixel, 0); } raster.setPixel(rX, rY, zpixel); } } } } break; case DataBuffer.TYPE_INT: { for (int y = 0; y < h; y++, rY++) { rX = rminX; for (int x = 0; x < w; x++, rX++) { pixel = raster.getPixel(rX, rY, pixel); normAlpha = pixel[aIdx] * alphaScale; if (normAlpha != 0.f) { for (int c=0; c < aIdx; c++) { pixel[c] = (int) (pixel[c] * normAlpha + 0.5f); } raster.setPixel(rX, rY, pixel); } else { if (zpixel == null) { zpixel = new int[numComponents]; java.util.Arrays.fill(zpixel, 0); } raster.setPixel(rX, rY, zpixel); } } } } break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } } else { // We are premultiplied and want to divide it out switch (transferType) { case DataBuffer.TYPE_BYTE: { for (int y = 0; y < h; y++, rY++) { rX = rminX; for (int x = 0; x < w; x++, rX++) { pixel = raster.getPixel(rX, rY, pixel); normAlpha = pixel[aIdx] * alphaScale; if (normAlpha != 0.0f) { float invAlpha = 1.0f / normAlpha; for (int c=0; c < aIdx; c++) { pixel[c] = (int) (pixel[c] * invAlpha + 0.5f); } raster.setPixel(rX, rY, pixel); } } } } break; case DataBuffer.TYPE_USHORT: { for (int y = 0; y < h; y++, rY++) { rX = rminX; for (int x = 0; x < w; x++, rX++) { pixel = raster.getPixel(rX, rY, pixel); normAlpha = pixel[aIdx] * alphaScale; if (normAlpha != 0) { float invAlpha = 1.0f / normAlpha; for (int c=0; c < aIdx; c++) { pixel[c] = (int) (pixel[c] * invAlpha + 0.5f); } raster.setPixel(rX, rY, pixel); } } } } break; case DataBuffer.TYPE_INT: { for (int y = 0; y < h; y++, rY++) { rX = rminX; for (int x = 0; x < w; x++, rX++) { pixel = raster.getPixel(rX, rY, pixel); normAlpha = pixel[aIdx] * alphaScale; if (normAlpha != 0) { float invAlpha = 1.0f / normAlpha; for (int c=0; c < aIdx; c++) { pixel[c] = (int) (pixel[c] * invAlpha + 0.5f); } raster.setPixel(rX, rY, pixel); } } } } break; default: throw new UnsupportedOperationException("This method has not been "+ "implemented for transferType " + transferType); } } // Return a new color model return new DirectColorModel(colorSpace, pixel_bits, maskArray[0], maskArray[1], maskArray[2], maskArray[3], isAlphaPremultiplied, transferType); }
Returns true if raster is compatible with this ColorModel and false if it is not.
Params:
  • raster – the Raster object to test for compatibility
Returns:true if raster is compatible with this ColorModel; false otherwise.
/** * Returns {@code true} if {@code raster} is compatible * with this {@code ColorModel} and {@code false} if it is * not. * @param raster the {@link Raster} object to test for compatibility * @return {@code true} if {@code raster} is compatible * with this {@code ColorModel}; {@code false} otherwise. */
public boolean isCompatibleRaster(Raster raster) { SampleModel sm = raster.getSampleModel(); SinglePixelPackedSampleModel spsm; if (sm instanceof SinglePixelPackedSampleModel) { spsm = (SinglePixelPackedSampleModel) sm; } else { return false; } if (spsm.getNumBands() != getNumComponents()) { return false; } int[] bitMasks = spsm.getBitMasks(); for (int i=0; i<numComponents; i++) { if (bitMasks[i] != maskArray[i]) { return false; } } return (raster.getTransferType() == transferType); } private void setFields() { // Set the private fields // REMIND: Get rid of these from the native code red_mask = maskArray[0]; red_offset = maskOffsets[0]; green_mask = maskArray[1]; green_offset = maskOffsets[1]; blue_mask = maskArray[2]; blue_offset = maskOffsets[2]; if (nBits[0] < 8) { red_scale = (1 << nBits[0]) - 1; } if (nBits[1] < 8) { green_scale = (1 << nBits[1]) - 1; } if (nBits[2] < 8) { blue_scale = (1 << nBits[2]) - 1; } if (supportsAlpha) { alpha_mask = maskArray[3]; alpha_offset = maskOffsets[3]; if (nBits[3] < 8) { alpha_scale = (1 << nBits[3]) - 1; } } }
Returns a String that represents this DirectColorModel.
Returns:a String representing this DirectColorModel.
/** * Returns a {@code String} that represents this * {@code DirectColorModel}. * @return a {@code String} representing this * {@code DirectColorModel}. */
public String toString() { return new String("DirectColorModel: rmask=" +Integer.toHexString(red_mask)+" gmask=" +Integer.toHexString(green_mask)+" bmask=" +Integer.toHexString(blue_mask)+" amask=" +Integer.toHexString(alpha_mask)); } }