/*
	* Copyright (C) 2002-2019 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.booleans;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
A type-specific hash set with with a fast, small-footprint implementation.

Instances of this class use a hash table to represent a set. The table is filled up to a specified load factor, and then doubled in size to accommodate new entries. If the table is emptied below one fourth of the load factor, it is halved in size; however, the table is never reduced to a size smaller than that at creation time: this approach makes it possible to create sets with a large capacity in which insertions and deletions do not cause immediately rehashing. Moreover, halving is not performed when deleting entries from an iterator, as it would interfere with the iteration process.

Note that clear() does not modify the hash table size. Rather, a family of trimming methods lets you control the size of the table; this is particularly useful if you reuse instances of this class.

See Also:
/** * A type-specific hash set with with a fast, small-footprint implementation. * * <p> * Instances of this class use a hash table to represent a set. The table is * filled up to a specified <em>load factor</em>, and then doubled in size to * accommodate new entries. If the table is emptied below <em>one fourth</em> of * the load factor, it is halved in size; however, the table is never reduced to * a size smaller than that at creation time: this approach makes it possible to * create sets with a large capacity in which insertions and deletions do not * cause immediately rehashing. Moreover, halving is not performed when deleting * entries from an iterator, as it would interfere with the iteration process. * * <p> * Note that {@link #clear()} does not modify the hash table size. Rather, a * family of {@linkplain #trim() trimming methods} lets you control the size of * the table; this is particularly useful if you reuse instances of this class. * * @see Hash * @see HashCommon */
public class BooleanOpenHashSet extends AbstractBooleanSet implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false;
The array of keys.
/** The array of keys. */
protected transient boolean[] key;
The mask for wrapping a position counter.
/** The mask for wrapping a position counter. */
protected transient int mask;
Whether this set contains the null key.
/** Whether this set contains the null key. */
protected transient boolean containsNull;
The current table size. Note that an additional element is allocated for storing the null key.
/** * The current table size. Note that an additional element is allocated for * storing the null key. */
protected transient int n;
Threshold after which we rehash. It must be the table size times f.
/** * Threshold after which we rehash. It must be the table size times {@link #f}. */
protected transient int maxFill;
We never resize below this threshold, which is the construction-time {#n}.
/** * We never resize below this threshold, which is the construction-time {#n}. */
protected final transient int minN;
Number of entries in the set (including the null key, if present).
/** Number of entries in the set (including the null key, if present). */
protected int size;
The acceptable load factor.
/** The acceptable load factor. */
protected final float f;
Creates a new hash set.

The actual table size will be the least power of two greater than expected/f.

Params:
  • expected – the expected number of elements in the hash set.
  • f – the load factor.
/** * Creates a new hash set. * * <p> * The actual table size will be the least power of two greater than * {@code expected}/{@code f}. * * @param expected * the expected number of elements in the hash set. * @param f * the load factor. */
public BooleanOpenHashSet(final int expected, final float f) { if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; minN = n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new boolean[n + 1]; }
Creates a new hash set with Hash.DEFAULT_LOAD_FACTOR as load factor.
Params:
  • expected – the expected number of elements in the hash set.
/** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected * the expected number of elements in the hash set. */
public BooleanOpenHashSet(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); }
Creates a new hash set with initial expected Hash.DEFAULT_INITIAL_SIZE elements and Hash.DEFAULT_LOAD_FACTOR as load factor.
/** * Creates a new hash set with initial expected * {@link Hash#DEFAULT_INITIAL_SIZE} elements and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */
public BooleanOpenHashSet() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); }
Creates a new hash set copying a given collection.
Params:
  • c – a Collection to be copied into the new hash set.
  • f – the load factor.
/** * Creates a new hash set copying a given collection. * * @param c * a {@link Collection} to be copied into the new hash set. * @param f * the load factor. */
public BooleanOpenHashSet(final Collection<? extends Boolean> c, final float f) { this(c.size(), f); addAll(c); }
Creates a new hash set with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given collection.
Params:
  • c – a Collection to be copied into the new hash set.
/** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c * a {@link Collection} to be copied into the new hash set. */
public BooleanOpenHashSet(final Collection<? extends Boolean> c) { this(c, DEFAULT_LOAD_FACTOR); }
Creates a new hash set copying a given type-specific collection.
Params:
  • c – a type-specific collection to be copied into the new hash set.
  • f – the load factor.
/** * Creates a new hash set copying a given type-specific collection. * * @param c * a type-specific collection to be copied into the new hash set. * @param f * the load factor. */
public BooleanOpenHashSet(final BooleanCollection c, final float f) { this(c.size(), f); addAll(c); }
Creates a new hash set with Hash.DEFAULT_LOAD_FACTOR as load factor copying a given type-specific collection.
Params:
  • c – a type-specific collection to be copied into the new hash set.
/** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c * a type-specific collection to be copied into the new hash set. */
public BooleanOpenHashSet(final BooleanCollection c) { this(c, DEFAULT_LOAD_FACTOR); }
Creates a new hash set using elements provided by a type-specific iterator.
Params:
  • i – a type-specific iterator whose elements will fill the set.
  • f – the load factor.
/** * Creates a new hash set using elements provided by a type-specific iterator. * * @param i * a type-specific iterator whose elements will fill the set. * @param f * the load factor. */
public BooleanOpenHashSet(final BooleanIterator i, final float f) { this(DEFAULT_INITIAL_SIZE, f); while (i.hasNext()) add(i.nextBoolean()); }
Creates a new hash set with Hash.DEFAULT_LOAD_FACTOR as load factor using elements provided by a type-specific iterator.
Params:
  • i – a type-specific iterator whose elements will fill the set.
/** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using elements provided by a type-specific iterator. * * @param i * a type-specific iterator whose elements will fill the set. */
public BooleanOpenHashSet(final BooleanIterator i) { this(i, DEFAULT_LOAD_FACTOR); }
Creates a new hash set using elements provided by an iterator.
Params:
  • i – an iterator whose elements will fill the set.
  • f – the load factor.
/** * Creates a new hash set using elements provided by an iterator. * * @param i * an iterator whose elements will fill the set. * @param f * the load factor. */
public BooleanOpenHashSet(final Iterator<?> i, final float f) { this(BooleanIterators.asBooleanIterator(i), f); }
Creates a new hash set with Hash.DEFAULT_LOAD_FACTOR as load factor using elements provided by an iterator.
Params:
  • i – an iterator whose elements will fill the set.
/** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * using elements provided by an iterator. * * @param i * an iterator whose elements will fill the set. */
public BooleanOpenHashSet(final Iterator<?> i) { this(BooleanIterators.asBooleanIterator(i)); }
Creates a new hash set and fills it with the elements of a given array.
Params:
  • a – an array whose elements will be used to fill the set.
  • offset – the first element to use.
  • length – the number of elements to use.
  • f – the load factor.
/** * Creates a new hash set and fills it with the elements of a given array. * * @param a * an array whose elements will be used to fill the set. * @param offset * the first element to use. * @param length * the number of elements to use. * @param f * the load factor. */
public BooleanOpenHashSet(final boolean[] a, final int offset, final int length, final float f) { this(length < 0 ? 0 : length, f); BooleanArrays.ensureOffsetLength(a, offset, length); for (int i = 0; i < length; i++) add(a[offset + i]); }
Creates a new hash set with Hash.DEFAULT_LOAD_FACTOR as load factor and fills it with the elements of a given array.
Params:
  • a – an array whose elements will be used to fill the set.
  • offset – the first element to use.
  • length – the number of elements to use.
/** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * and fills it with the elements of a given array. * * @param a * an array whose elements will be used to fill the set. * @param offset * the first element to use. * @param length * the number of elements to use. */
public BooleanOpenHashSet(final boolean[] a, final int offset, final int length) { this(a, offset, length, DEFAULT_LOAD_FACTOR); }
Creates a new hash set copying the elements of an array.
Params:
  • a – an array to be copied into the new hash set.
  • f – the load factor.
/** * Creates a new hash set copying the elements of an array. * * @param a * an array to be copied into the new hash set. * @param f * the load factor. */
public BooleanOpenHashSet(final boolean[] a, final float f) { this(a, 0, a.length, f); }
Creates a new hash set with Hash.DEFAULT_LOAD_FACTOR as load factor copying the elements of an array.
Params:
  • a – an array to be copied into the new hash set.
/** * Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a * an array to be copied into the new hash set. */
public BooleanOpenHashSet(final boolean[] a) { this(a, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNull ? size - 1 : size; } private void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int) Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long) Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } @Override public boolean addAll(BooleanCollection c) { if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() // elements return super.addAll(c); } @Override public boolean addAll(Collection<? extends Boolean> c) { // The resulting collection will be at least c.size() big if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() // elements return super.addAll(c); } @Override public boolean add(final boolean k) { int pos; if (((k) == (false))) { if (containsNull) return false; containsNull = true; } else { boolean curr; final boolean[] key = this.key; // The starting point. if (!((curr = key[pos = ((k) ? 0xfab5368 : 0xcba05e7b) & mask]) == (false))) { if (((curr) == (k))) return false; while (!((curr = key[pos = (pos + 1) & mask]) == (false))) if (((curr) == (k))) return false; } key[pos] = k; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return true; }
Shifts left entries with the specified hash code, starting at the specified position, and empties the resulting free entry.
Params:
  • pos – a starting position.
/** * Shifts left entries with the specified hash code, starting at the specified * position, and empties the resulting free entry. * * @param pos * a starting position. */
protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; boolean curr; final boolean[] key = this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((curr = key[pos]) == (false))) { key[last] = (false); return; } slot = ((curr) ? 0xfab5368 : 0xcba05e7b) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; } } private boolean removeEntry(final int pos) { size--; shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } private boolean removeNullEntry() { containsNull = false; key[n] = (false); size--; if (n > minN && size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } @Override public boolean remove(final boolean k) { if (((k) == (false))) { if (containsNull) return removeNullEntry(); return false; } boolean curr; final boolean[] key = this.key; int pos; // The starting point. if (((curr = key[pos = ((k) ? 0xfab5368 : 0xcba05e7b) & mask]) == (false))) return false; if (((k) == (curr))) return removeEntry(pos); while (true) { if (((curr = key[pos = (pos + 1) & mask]) == (false))) return false; if (((k) == (curr))) return removeEntry(pos); } } @Override public boolean contains(final boolean k) { if (((k) == (false))) return containsNull; boolean curr; final boolean[] key = this.key; int pos; // The starting point. if (((curr = key[pos = ((k) ? 0xfab5368 : 0xcba05e7b) & mask]) == (false))) return false; if (((k) == (curr))) return true; while (true) { if (((curr = key[pos = (pos + 1) & mask]) == (false))) return false; if (((k) == (curr))) return true; } } /* * Removes all elements from this set. * * <p>To increase object reuse, this method does not change the table size. If * you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNull = false; Arrays.fill(key, (false)); } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; }
An iterator over a hash set.
/** An iterator over a hash set. */
private class SetIterator implements BooleanIterator {
The index of the last entry returned, if positive or zero; initially, BooleanOpenHashSet.n. If negative, the last element returned was that of index - pos - 1 from the wrapped list.
/** * The index of the last entry returned, if positive or zero; initially, * {@link #n}. If negative, the last element returned was that of index * {@code - pos - 1} from the {@link #wrapped} list. */
int pos = n;
The index of the last entry that has been returned (more precisely, the value of pos if pos is positive, or Integer.MIN_VALUE if pos is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed.
/** * The index of the last entry that has been returned (more precisely, the value * of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if * {@link #pos} is negative). It is -1 if either we did not return an entry yet, * or the last returned entry has been removed. */
int last = -1;
A downward counter measuring how many entries must still be returned.
/** A downward counter measuring how many entries must still be returned. */
int c = size;
A boolean telling us whether we should return the null key.
/** A boolean telling us whether we should return the null key. */
boolean mustReturnNull = BooleanOpenHashSet.this.containsNull;
A lazily allocated list containing elements that have wrapped around the table because of removals.
/** * A lazily allocated list containing elements that have wrapped around the * table because of removals. */
BooleanArrayList wrapped; @Override public boolean hasNext() { return c != 0; } @Override public boolean nextBoolean() { if (!hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNull) { mustReturnNull = false; last = n; return key[n]; } final boolean key[] = BooleanOpenHashSet.this.key; for (;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; return wrapped.getBoolean(-pos - 1); } if (!((key[pos]) == (false))) return key[last = pos]; } }
Shifts left entries with the specified hash code, starting at the specified position, and empties the resulting free entry.
Params:
  • pos – a starting position.
/** * Shifts left entries with the specified hash code, starting at the specified * position, and empties the resulting free entry. * * @param pos * a starting position. */
private final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; boolean curr; final boolean[] key = BooleanOpenHashSet.this.key; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if (((curr = key[pos]) == (false))) { key[last] = (false); return; } slot = ((curr) ? 0xfab5368 : 0xcba05e7b) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new BooleanArrayList(2); wrapped.add(key[pos]); } key[last] = curr; } } @Override public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { BooleanOpenHashSet.this.containsNull = false; BooleanOpenHashSet.this.key[n] = (false); } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. BooleanOpenHashSet.this.remove(wrapped.getBoolean(-pos - 1)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } } @Override public BooleanIterator iterator() { return new SetIterator(); }
Rehashes this set, making the table as small as possible.

This method rehashes the table to the smallest size satisfying the load factor. It can be used when the set will not be changed anymore, so to optimize access speed and size.

If the table size is already the minimum possible, this method does nothing.

See Also:
Returns:true if there was enough memory to trim the set.
/** * Rehashes this set, making the table as small as possible. * * <p> * This method rehashes the table to the smallest size satisfying the load * factor. It can be used when the set will not be changed anymore, so to * optimize access speed and size. * * <p> * If the table size is already the minimum possible, this method does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(int) */
public boolean trim() { return trim(size); }
Rehashes this set if the table is too large.

Let N be the smallest table size that can hold max(n,size()) entries, still satisfying the load factor. If the current table size is smaller than or equal to N, this method does nothing. Otherwise, it rehashes this set in a table of size N.

This method is useful when reusing sets. Clearing a set leaves the table size untouched. If you are reusing a set many times, you can call this method with a typical size to avoid keeping around a very large table just because of a few large transient sets.

Params:
  • n – the threshold for the trimming.
See Also:
Returns:true if there was enough memory to trim the set.
/** * Rehashes this set if the table is too large. * * <p> * Let <var>N</var> be the smallest table size that can hold * <code>max(n,{@link #size()})</code> entries, still satisfying the load * factor. If the current table size is smaller than or equal to <var>N</var>, * this method does nothing. Otherwise, it rehashes this set in a table of size * <var>N</var>. * * <p> * This method is useful when reusing sets. {@linkplain #clear() Clearing a set} * leaves the table size untouched. If you are reusing a set many times, you can * call this method with a typical size to avoid keeping around a very large * table just because of a few large transient sets. * * @param n * the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */
public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int) Math.ceil(n / f)); if (l >= this.n || size > maxFill(l, f)) return true; try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; }
Rehashes the set.

This method implements the basic rehashing strategy, and may be overriden by subclasses implementing different rehashing strategies (e.g., disk-based rehashing). However, you should not override this method unless you understand the internal workings of this class.

Params:
  • newN – the new size
/** * Rehashes the set. * * <p> * This method implements the basic rehashing strategy, and may be overriden by * subclasses implementing different rehashing strategies (e.g., disk-based * rehashing). However, you should not override this method unless you * understand the internal workings of this class. * * @param newN * the new size */
protected void rehash(final int newN) { final boolean key[] = this.key; final int mask = newN - 1; // Note that this is used by the hashing macro final boolean newKey[] = new boolean[newN + 1]; int i = n, pos; for (int j = realSize(); j-- != 0;) { while (((key[--i]) == (false))); if (!((newKey[pos = ((key[i]) ? 0xfab5368 : 0xcba05e7b) & mask]) == (false))) while (!((newKey[pos = (pos + 1) & mask]) == (false))); newKey[pos] = key[i]; } n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; }
Returns a deep copy of this set.

This method performs a deep copy of this hash set; the data stored in the set, however, is not cloned. Note that this makes a difference only for object keys.

Returns:a deep copy of this set.
/** * Returns a deep copy of this set. * * <p> * This method performs a deep copy of this hash set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for * object keys. * * @return a deep copy of this set. */
@Override public BooleanOpenHashSet clone() { BooleanOpenHashSet c; try { c = (BooleanOpenHashSet) super.clone(); } catch (CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key.clone(); c.containsNull = containsNull; return c; }
Returns a hash code for this set. This method overrides the generic method provided by the superclass. Since equals() is not overriden, it is important that the value returned by this method is the same value as the one returned by the overriden method.
Returns:a hash code for this set.
/** * Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. Since * {@code equals()} is not overriden, it is important that the value returned by * this method is the same value as the one returned by the overriden method. * * @return a hash code for this set. */
@Override public int hashCode() { int h = 0; for (int j = realSize(), i = 0; j-- != 0;) { while (((key[i]) == (false))) i++; h += ((key[i]) ? 1231 : 1237); i++; } // Zero / null have hash zero. return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final BooleanIterator i = iterator(); s.defaultWriteObject(); for (int j = size; j-- != 0;) s.writeBoolean(i.nextBoolean()); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final boolean key[] = this.key = new boolean[n + 1]; boolean k; for (int i = size, pos; i-- != 0;) { k = s.readBoolean(); if (((k) == (false))) { pos = n; containsNull = true; } else { if (!((key[pos = ((k) ? 0xfab5368 : 0xcba05e7b) & mask]) == (false))) while (!((key[pos = (pos + 1) & mask]) == (false))); } key[pos] = k; } if (ASSERTS) checkTable(); } private void checkTable() { } }