/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */
package org.apache.commons.collections.bidimap;

import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

import org.apache.commons.collections.BidiMap;
import org.apache.commons.collections.KeyValue;
import org.apache.commons.collections.MapIterator;
import org.apache.commons.collections.OrderedBidiMap;
import org.apache.commons.collections.OrderedIterator;
import org.apache.commons.collections.OrderedMapIterator;
import org.apache.commons.collections.iterators.EmptyOrderedMapIterator;
import org.apache.commons.collections.keyvalue.UnmodifiableMapEntry;

Red-Black tree-based implementation of BidiMap where all objects added implement the Comparable interface.

This class guarantees that the map will be in both ascending key order and ascending value order, sorted according to the natural order for the key's and value's classes.

This Map is intended for applications that need to be able to look up a key-value pairing by either key or value, and need to do so with equal efficiency.

While that goal could be accomplished by taking a pair of TreeMaps and redirecting requests to the appropriate TreeMap (e.g., containsKey would be directed to the TreeMap that maps values to keys, containsValue would be directed to the TreeMap that maps keys to values), there are problems with that implementation. If the data contained in the TreeMaps is large, the cost of redundant storage becomes significant. The DualTreeBidiMap and DualHashBidiMap implementations use this approach.

This solution keeps minimizes the data storage by holding data only once. The red-black algorithm is based on java util TreeMap, but has been modified to simultaneously map a tree node by key and by value. This doubles the cost of put operations (but so does using two TreeMaps), and nearly doubles the cost of remove operations (there is a savings in that the lookup of the node to be removed only has to be performed once). And since only one node contains the key and value, storage is significantly less than that required by two TreeMaps.

The Map.Entry instances returned by the appropriate methods will not allow setValue() and will throw an UnsupportedOperationException on attempts to call that method.

Author:Marc Johnson, Stephen Colebourne
Since:Commons Collections 3.0 (previously DoubleOrderedMap v2.0)
Version:$Revision: 1713173 $ $Date: 2015-11-07 21:31:09 +0100 (Sat, 07 Nov 2015) $
/** * Red-Black tree-based implementation of BidiMap where all objects added * implement the <code>Comparable</code> interface. * <p> * This class guarantees that the map will be in both ascending key order * and ascending value order, sorted according to the natural order for * the key's and value's classes. * <p> * This Map is intended for applications that need to be able to look * up a key-value pairing by either key or value, and need to do so * with equal efficiency. * <p> * While that goal could be accomplished by taking a pair of TreeMaps * and redirecting requests to the appropriate TreeMap (e.g., * containsKey would be directed to the TreeMap that maps values to * keys, containsValue would be directed to the TreeMap that maps keys * to values), there are problems with that implementation. * If the data contained in the TreeMaps is large, the cost of redundant * storage becomes significant. The {@link DualTreeBidiMap} and * {@link DualHashBidiMap} implementations use this approach. * <p> * This solution keeps minimizes the data storage by holding data only once. * The red-black algorithm is based on java util TreeMap, but has been modified * to simultaneously map a tree node by key and by value. This doubles the * cost of put operations (but so does using two TreeMaps), and nearly doubles * the cost of remove operations (there is a savings in that the lookup of the * node to be removed only has to be performed once). And since only one node * contains the key and value, storage is significantly less than that * required by two TreeMaps. * <p> * The Map.Entry instances returned by the appropriate methods will * not allow setValue() and will throw an * UnsupportedOperationException on attempts to call that method. * * @since Commons Collections 3.0 (previously DoubleOrderedMap v2.0) * @version $Revision: 1713173 $ $Date: 2015-11-07 21:31:09 +0100 (Sat, 07 Nov 2015) $ * * @author Marc Johnson * @author Stephen Colebourne */
public class TreeBidiMap implements OrderedBidiMap { private static final int KEY = 0; private static final int VALUE = 1; private static final int MAPENTRY = 2; private static final int INVERSEMAPENTRY = 3; private static final int SUM_OF_INDICES = KEY + VALUE; private static final int FIRST_INDEX = 0; private static final int NUMBER_OF_INDICES = 2; private static final String[] dataName = new String[] { "key", "value" }; private Node[] rootNode = new Node[2]; private int nodeCount = 0; private int modifications = 0; private Set keySet; private Set valuesSet; private Set entrySet; private TreeBidiMap.Inverse inverse = null; //-----------------------------------------------------------------------
Constructs a new empty TreeBidiMap.
/** * Constructs a new empty TreeBidiMap. */
public TreeBidiMap() { super(); }
Constructs a new TreeBidiMap by copying an existing Map.
Params:
  • map – the map to copy
Throws:
/** * Constructs a new TreeBidiMap by copying an existing Map. * * @param map the map to copy * @throws ClassCastException if the keys/values in the map are * not Comparable or are not mutually comparable * @throws NullPointerException if any key or value in the map is null */
public TreeBidiMap(final Map map) { super(); putAll(map); } //-----------------------------------------------------------------------
Returns the number of key-value mappings in this map.
Returns:the number of key-value mappings in this map
/** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map */
public int size() { return nodeCount; }
Checks whether the map is empty or not.
Returns:true if the map is empty
/** * Checks whether the map is empty or not. * * @return true if the map is empty */
public boolean isEmpty() { return (nodeCount == 0); }
Checks whether this map contains the a mapping for the specified key.

The key must implement Comparable.

Params:
  • key – key whose presence in this map is to be tested
Throws:
Returns:true if this map contains a mapping for the specified key
/** * Checks whether this map contains the a mapping for the specified key. * <p> * The key must implement <code>Comparable</code>. * * @param key key whose presence in this map is to be tested * @return true if this map contains a mapping for the specified key * @throws ClassCastException if the key is of an inappropriate type * @throws NullPointerException if the key is null */
public boolean containsKey(final Object key) { checkKey(key); return (lookup((Comparable) key, KEY) != null); }
Checks whether this map contains the a mapping for the specified value.

The value must implement Comparable.

Params:
  • value – value whose presence in this map is to be tested
Throws:
Returns:true if this map contains a mapping for the specified value
/** * Checks whether this map contains the a mapping for the specified value. * <p> * The value must implement <code>Comparable</code>. * * @param value value whose presence in this map is to be tested * @return true if this map contains a mapping for the specified value * @throws ClassCastException if the value is of an inappropriate type * @throws NullPointerException if the value is null */
public boolean containsValue(final Object value) { checkValue(value); return (lookup((Comparable) value, VALUE) != null); }
Gets the value to which this map maps the specified key. Returns null if the map contains no mapping for this key.

The key must implement Comparable.

Params:
  • key – key whose associated value is to be returned
Throws:
Returns:the value to which this map maps the specified key, or null if the map contains no mapping for this key
/** * Gets the value to which this map maps the specified key. * Returns null if the map contains no mapping for this key. * <p> * The key must implement <code>Comparable</code>. * * @param key key whose associated value is to be returned * @return the value to which this map maps the specified key, * or null if the map contains no mapping for this key * @throws ClassCastException if the key is of an inappropriate type * @throws NullPointerException if the key is null */
public Object get(final Object key) { return doGet((Comparable) key, KEY); }
Puts the key-value pair into the map, replacing any previous pair.

When adding a key-value pair, the value may already exist in the map against a different key. That mapping is removed, to ensure that the value only occurs once in the inverse map.

 BidiMap map1 = new TreeBidiMap();
 map.put("A","B");  // contains A mapped to B, as per Map
 map.put("A","C");  // contains A mapped to C, as per Map
 BidiMap map2 = new TreeBidiMap();
 map.put("A","B");  // contains A mapped to B, as per Map
 map.put("C","B");  // contains C mapped to B, key A is removed

Both key and value must implement Comparable.

Params:
  • key – key with which the specified value is to be associated
  • value – value to be associated with the specified key
Throws:
Returns:the previous value for the key
/** * Puts the key-value pair into the map, replacing any previous pair. * <p> * When adding a key-value pair, the value may already exist in the map * against a different key. That mapping is removed, to ensure that the * value only occurs once in the inverse map. * <pre> * BidiMap map1 = new TreeBidiMap(); * map.put("A","B"); // contains A mapped to B, as per Map * map.put("A","C"); // contains A mapped to C, as per Map * * BidiMap map2 = new TreeBidiMap(); * map.put("A","B"); // contains A mapped to B, as per Map * map.put("C","B"); // contains C mapped to B, key A is removed * </pre> * <p> * Both key and value must implement <code>Comparable</code>. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value for the key * @throws ClassCastException if the key is of an inappropriate type * @throws NullPointerException if the key is null */
public Object put(final Object key, final Object value) { return doPut((Comparable) key, (Comparable) value, KEY); }
Puts all the mappings from the specified map into this map.

All keys and values must implement Comparable.

Params:
  • map – the map to copy from
/** * Puts all the mappings from the specified map into this map. * <p> * All keys and values must implement <code>Comparable</code>. * * @param map the map to copy from */
public void putAll(Map map) { Iterator it = map.entrySet().iterator(); while (it.hasNext()) { Map.Entry entry = (Map.Entry) it.next(); put(entry.getKey(), entry.getValue()); } }
Removes the mapping for this key from this map if present.

The key must implement Comparable.

Params:
  • key – key whose mapping is to be removed from the map.
Throws:
Returns:previous value associated with specified key, or null if there was no mapping for key.
/** * Removes the mapping for this key from this map if present. * <p> * The key must implement <code>Comparable</code>. * * @param key key whose mapping is to be removed from the map. * @return previous value associated with specified key, * or null if there was no mapping for key. * @throws ClassCastException if the key is of an inappropriate type * @throws NullPointerException if the key is null */
public Object remove(final Object key) { return doRemove((Comparable) key, KEY); }
Removes all mappings from this map.
/** * Removes all mappings from this map. */
public void clear() { modify(); nodeCount = 0; rootNode[KEY] = null; rootNode[VALUE] = null; } //-----------------------------------------------------------------------
Returns the key to which this map maps the specified value. Returns null if the map contains no mapping for this value.

The value must implement Comparable.

Params:
  • value – value whose associated key is to be returned.
Throws:
Returns:the key to which this map maps the specified value, or null if the map contains no mapping for this value.
/** * Returns the key to which this map maps the specified value. * Returns null if the map contains no mapping for this value. * <p> * The value must implement <code>Comparable</code>. * * @param value value whose associated key is to be returned. * @return the key to which this map maps the specified value, * or null if the map contains no mapping for this value. * @throws ClassCastException if the value is of an inappropriate type * @throws NullPointerException if the value is null */
public Object getKey(final Object value) { return doGet((Comparable) value, VALUE); }
Removes the mapping for this value from this map if present.

The value must implement Comparable.

Params:
  • value – value whose mapping is to be removed from the map
Throws:
Returns:previous key associated with specified value, or null if there was no mapping for value.
/** * Removes the mapping for this value from this map if present. * <p> * The value must implement <code>Comparable</code>. * * @param value value whose mapping is to be removed from the map * @return previous key associated with specified value, * or null if there was no mapping for value. * @throws ClassCastException if the value is of an inappropriate type * @throws NullPointerException if the value is null */
public Object removeValue(final Object value) { return doRemove((Comparable) value, VALUE); } //-----------------------------------------------------------------------
Gets the first (lowest) key currently in this map.
Throws:
Returns:the first (lowest) key currently in this sorted map
/** * Gets the first (lowest) key currently in this map. * * @return the first (lowest) key currently in this sorted map * @throws NoSuchElementException if this map is empty */
public Object firstKey() { if (nodeCount == 0) { throw new NoSuchElementException("Map is empty"); } return leastNode(rootNode[KEY], KEY).getKey(); }
Gets the last (highest) key currently in this map.
Throws:
Returns:the last (highest) key currently in this sorted map
/** * Gets the last (highest) key currently in this map. * * @return the last (highest) key currently in this sorted map * @throws NoSuchElementException if this map is empty */
public Object lastKey() { if (nodeCount == 0) { throw new NoSuchElementException("Map is empty"); } return greatestNode(rootNode[KEY], KEY).getKey(); }
Gets the next key after the one specified.

The key must implement Comparable.

Params:
  • key – the key to search for next from
Returns:the next key, null if no match or at end
/** * Gets the next key after the one specified. * <p> * The key must implement <code>Comparable</code>. * * @param key the key to search for next from * @return the next key, null if no match or at end */
public Object nextKey(Object key) { checkKey(key); Node node = nextGreater(lookup((Comparable) key, KEY), KEY); return (node == null ? null : node.getKey()); }
Gets the previous key before the one specified.

The key must implement Comparable.

Params:
  • key – the key to search for previous from
Returns:the previous key, null if no match or at start
/** * Gets the previous key before the one specified. * <p> * The key must implement <code>Comparable</code>. * * @param key the key to search for previous from * @return the previous key, null if no match or at start */
public Object previousKey(Object key) { checkKey(key); Node node = nextSmaller(lookup((Comparable) key, KEY), KEY); return (node == null ? null : node.getKey()); } //-----------------------------------------------------------------------
Returns a set view of the keys contained in this map in key order.

The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress, the results of the iteration are undefined.

The set supports element removal, which removes the corresponding mapping from the map. It does not support the add or addAll operations.

Returns:a set view of the keys contained in this map.
/** * Returns a set view of the keys contained in this map in key order. * <p> * The set is backed by the map, so changes to the map are reflected in * the set, and vice-versa. If the map is modified while an iteration over * the set is in progress, the results of the iteration are undefined. * <p> * The set supports element removal, which removes the corresponding mapping * from the map. It does not support the add or addAll operations. * * @return a set view of the keys contained in this map. */
public Set keySet() { if (keySet == null) { keySet = new View(this, KEY, KEY); } return keySet; } //-----------------------------------------------------------------------
Returns a set view of the values contained in this map in key order. The returned object can be cast to a Set.

The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress, the results of the iteration are undefined.

The set supports element removal, which removes the corresponding mapping from the map. It does not support the add or addAll operations.

Returns:a set view of the values contained in this map.
/** * Returns a set view of the values contained in this map in key order. * The returned object can be cast to a Set. * <p> * The set is backed by the map, so changes to the map are reflected in * the set, and vice-versa. If the map is modified while an iteration over * the set is in progress, the results of the iteration are undefined. * <p> * The set supports element removal, which removes the corresponding mapping * from the map. It does not support the add or addAll operations. * * @return a set view of the values contained in this map. */
public Collection values() { if (valuesSet == null) { valuesSet = new View(this, KEY, VALUE); } return valuesSet; } //-----------------------------------------------------------------------
Returns a set view of the entries contained in this map in key order. For simple iteration through the map, the MapIterator is quicker.

The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress, the results of the iteration are undefined.

The set supports element removal, which removes the corresponding mapping from the map. It does not support the add or addAll operations. The returned MapEntry objects do not support setValue.

Returns:a set view of the values contained in this map.
/** * Returns a set view of the entries contained in this map in key order. * For simple iteration through the map, the MapIterator is quicker. * <p> * The set is backed by the map, so changes to the map are reflected in * the set, and vice-versa. If the map is modified while an iteration over * the set is in progress, the results of the iteration are undefined. * <p> * The set supports element removal, which removes the corresponding mapping * from the map. It does not support the add or addAll operations. * The returned MapEntry objects do not support setValue. * * @return a set view of the values contained in this map. */
public Set entrySet() { if (entrySet == null) { entrySet = new EntryView(this, KEY, MAPENTRY); } return entrySet; } //-----------------------------------------------------------------------
Gets an iterator over the map entries.

For this map, this iterator is the fastest way to iterate over the entries.

Returns:an iterator
/** * Gets an iterator over the map entries. * <p> * For this map, this iterator is the fastest way to iterate over the entries. * * @return an iterator */
public MapIterator mapIterator() { if (isEmpty()) { return EmptyOrderedMapIterator.INSTANCE; } return new ViewMapIterator(this, KEY); }
Gets an ordered iterator over the map entries.

This iterator allows both forward and reverse iteration over the entries.

Returns:an iterator
/** * Gets an ordered iterator over the map entries. * <p> * This iterator allows both forward and reverse iteration over the entries. * * @return an iterator */
public OrderedMapIterator orderedMapIterator() { if (isEmpty()) { return EmptyOrderedMapIterator.INSTANCE; } return new ViewMapIterator(this, KEY); } //-----------------------------------------------------------------------
Gets the inverse map for comparison.
Returns:the inverse map
/** * Gets the inverse map for comparison. * * @return the inverse map */
public BidiMap inverseBidiMap() { return inverseOrderedBidiMap(); }
Gets the inverse map for comparison.
Returns:the inverse map
/** * Gets the inverse map for comparison. * * @return the inverse map */
public OrderedBidiMap inverseOrderedBidiMap() { if (inverse == null) { inverse = new Inverse(this); } return inverse; } //-----------------------------------------------------------------------
Compares for equals as per the API.
Params:
  • obj – the object to compare to
Returns:true if equal
/** * Compares for equals as per the API. * * @param obj the object to compare to * @return true if equal */
public boolean equals(Object obj) { return this.doEquals(obj, KEY); }
Gets the hash code value for this map as per the API.
Returns:the hash code value for this map
/** * Gets the hash code value for this map as per the API. * * @return the hash code value for this map */
public int hashCode() { return this.doHashCode(KEY); }
Returns a string version of this Map in standard format.
Returns:a standard format string version of the map
/** * Returns a string version of this Map in standard format. * * @return a standard format string version of the map */
public String toString() { return this.doToString(KEY); } //-----------------------------------------------------------------------
Common get logic, used to get by key or get by value
Params:
  • obj – the key or value that we're looking for
  • index – the KEY or VALUE int
Returns:the key (if the value was mapped) or the value (if the key was mapped); null if we couldn't find the specified object
/** * Common get logic, used to get by key or get by value * * @param obj the key or value that we're looking for * @param index the KEY or VALUE int * @return the key (if the value was mapped) or the value (if the * key was mapped); null if we couldn't find the specified * object */
private Object doGet(final Comparable obj, final int index) { checkNonNullComparable(obj, index); Node node = lookup(obj, index); return ((node == null) ? null : node.getData(oppositeIndex(index))); }
Common put logic, differing only in the return value.
Params:
  • key – the key, always the main map key
  • value – the value, always the main map value
  • index – the KEY or VALUE int, for the return value only
Returns:the previously mapped value
/** * Common put logic, differing only in the return value. * * @param key the key, always the main map key * @param value the value, always the main map value * @param index the KEY or VALUE int, for the return value only * @return the previously mapped value */
private Object doPut(final Comparable key, final Comparable value, final int index) { checkKeyAndValue(key, value); // store previous and remove previous mappings Object prev = (index == KEY ? doGet(key, KEY) : doGet(value, VALUE)); doRemove(key, KEY); doRemove(value, VALUE); Node node = rootNode[KEY]; if (node == null) { // map is empty Node root = new Node(key, value); rootNode[KEY] = root; rootNode[VALUE] = root; grow(); } else { // add new mapping while (true) { int cmp = compare(key, node.getData(KEY)); if (cmp == 0) { // shouldn't happen throw new IllegalArgumentException("Cannot store a duplicate key (\"" + key + "\") in this Map"); } else if (cmp < 0) { if (node.getLeft(KEY) != null) { node = node.getLeft(KEY); } else { Node newNode = new Node(key, value); insertValue(newNode); node.setLeft(newNode, KEY); newNode.setParent(node, KEY); doRedBlackInsert(newNode, KEY); grow(); break; } } else { // cmp > 0 if (node.getRight(KEY) != null) { node = node.getRight(KEY); } else { Node newNode = new Node(key, value); insertValue(newNode); node.setRight(newNode, KEY); newNode.setParent(node, KEY); doRedBlackInsert(newNode, KEY); grow(); break; } } } } return prev; }
Remove by object (remove by key or remove by value)
Params:
  • o – the key, or value, that we're looking for
  • index – the KEY or VALUE int
Returns:the key, if remove by value, or the value, if remove by key. null if the specified key or value could not be found
/** * Remove by object (remove by key or remove by value) * * @param o the key, or value, that we're looking for * @param index the KEY or VALUE int * * @return the key, if remove by value, or the value, if remove by * key. null if the specified key or value could not be * found */
private Object doRemove(final Comparable o, final int index) { Node node = lookup(o, index); Object rval = null; if (node != null) { rval = node.getData(oppositeIndex(index)); doRedBlackDelete(node); } return rval; }
do the actual lookup of a piece of data
Params:
  • data – the key or value to be looked up
  • index – the KEY or VALUE int
Returns:the desired Node, or null if there is no mapping of the specified data
/** * do the actual lookup of a piece of data * * @param data the key or value to be looked up * @param index the KEY or VALUE int * @return the desired Node, or null if there is no mapping of the * specified data */
private Node lookup(final Comparable data, final int index) { Node rval = null; Node node = rootNode[index]; while (node != null) { int cmp = compare(data, node.getData(index)); if (cmp == 0) { rval = node; break; } else { node = (cmp < 0) ? node.getLeft(index) : node.getRight(index); } } return rval; }
get the next larger node from the specified node
Params:
  • node – the node to be searched from
  • index – the KEY or VALUE int
Returns:the specified node
/** * get the next larger node from the specified node * * @param node the node to be searched from * @param index the KEY or VALUE int * @return the specified node */
private Node nextGreater(final Node node, final int index) { Node rval = null; if (node == null) { rval = null; } else if (node.getRight(index) != null) { // everything to the node's right is larger. The least of // the right node's descendants is the next larger node rval = leastNode(node.getRight(index), index); } else { // traverse up our ancestry until we find an ancestor that // is null or one whose left child is our ancestor. If we // find a null, then this node IS the largest node in the // tree, and there is no greater node. Otherwise, we are // the largest node in the subtree on that ancestor's left // ... and that ancestor is the next greatest node Node parent = node.getParent(index); Node child = node; while ((parent != null) && (child == parent.getRight(index))) { child = parent; parent = parent.getParent(index); } rval = parent; } return rval; }
get the next larger node from the specified node
Params:
  • node – the node to be searched from
  • index – the KEY or VALUE int
Returns:the specified node
/** * get the next larger node from the specified node * * @param node the node to be searched from * @param index the KEY or VALUE int * @return the specified node */
private Node nextSmaller(final Node node, final int index) { Node rval = null; if (node == null) { rval = null; } else if (node.getLeft(index) != null) { // everything to the node's left is smaller. The greatest of // the left node's descendants is the next smaller node rval = greatestNode(node.getLeft(index), index); } else { // traverse up our ancestry until we find an ancestor that // is null or one whose right child is our ancestor. If we // find a null, then this node IS the largest node in the // tree, and there is no greater node. Otherwise, we are // the largest node in the subtree on that ancestor's right // ... and that ancestor is the next greatest node Node parent = node.getParent(index); Node child = node; while ((parent != null) && (child == parent.getLeft(index))) { child = parent; parent = parent.getParent(index); } rval = parent; } return rval; } //-----------------------------------------------------------------------
Get the opposite index of the specified index
Params:
  • index – the KEY or VALUE int
Returns:VALUE (if KEY was specified), else KEY
/** * Get the opposite index of the specified index * * @param index the KEY or VALUE int * @return VALUE (if KEY was specified), else KEY */
private static int oppositeIndex(final int index) { // old trick ... to find the opposite of a value, m or n, // subtract the value from the sum of the two possible // values. (m + n) - m = n; (m + n) - n = m return SUM_OF_INDICES - index; }
Compare two objects
Params:
  • o1 – the first object
  • o2 – the second object
Returns:negative value if o1 < o2; 0 if o1 == o2; positive value if o1 > o2
/** * Compare two objects * * @param o1 the first object * @param o2 the second object * * @return negative value if o1 &lt; o2; 0 if o1 == o2; positive * value if o1 &gt; o2 */
private static int compare(final Comparable o1, final Comparable o2) { return o1.compareTo(o2); }
Find the least node from a given node.
Params:
  • node – the node from which we will start searching
  • index – the KEY or VALUE int
Returns:the smallest node, from the specified node, in the specified mapping
/** * Find the least node from a given node. * * @param node the node from which we will start searching * @param index the KEY or VALUE int * @return the smallest node, from the specified node, in the * specified mapping */
private static Node leastNode(final Node node, final int index) { Node rval = node; if (rval != null) { while (rval.getLeft(index) != null) { rval = rval.getLeft(index); } } return rval; }
Find the greatest node from a given node.
Params:
  • node – the node from which we will start searching
  • index – the KEY or VALUE int
Returns:the greatest node, from the specified node
/** * Find the greatest node from a given node. * * @param node the node from which we will start searching * @param index the KEY or VALUE int * @return the greatest node, from the specified node */
private static Node greatestNode(final Node node, final int index) { Node rval = node; if (rval != null) { while (rval.getRight(index) != null) { rval = rval.getRight(index); } } return rval; }
copy the color from one node to another, dealing with the fact that one or both nodes may, in fact, be null
Params:
  • from – the node whose color we're copying; may be null
  • to – the node whose color we're changing; may be null
  • index – the KEY or VALUE int
/** * copy the color from one node to another, dealing with the fact * that one or both nodes may, in fact, be null * * @param from the node whose color we're copying; may be null * @param to the node whose color we're changing; may be null * @param index the KEY or VALUE int */
private static void copyColor(final Node from, final Node to, final int index) { if (to != null) { if (from == null) { // by default, make it black to.setBlack(index); } else { to.copyColor(from, index); } } }
is the specified node red? if the node does not exist, no, it's black, thank you
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * is the specified node red? if the node does not exist, no, it's * black, thank you * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static boolean isRed(final Node node, final int index) { return ((node == null) ? false : node.isRed(index)); }
is the specified black red? if the node does not exist, sure, it's black, thank you
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * is the specified black red? if the node does not exist, sure, * it's black, thank you * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static boolean isBlack(final Node node, final int index) { return ((node == null) ? true : node.isBlack(index)); }
force a node (if it exists) red
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * force a node (if it exists) red * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static void makeRed(final Node node, final int index) { if (node != null) { node.setRed(index); } }
force a node (if it exists) black
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * force a node (if it exists) black * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static void makeBlack(final Node node, final int index) { if (node != null) { node.setBlack(index); } }
get a node's grandparent. mind you, the node, its parent, or its grandparent may not exist. no problem
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * get a node's grandparent. mind you, the node, its parent, or * its grandparent may not exist. no problem * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static Node getGrandParent(final Node node, final int index) { return getParent(getParent(node, index), index); }
get a node's parent. mind you, the node, or its parent, may not exist. no problem
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * get a node's parent. mind you, the node, or its parent, may not * exist. no problem * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static Node getParent(final Node node, final int index) { return ((node == null) ? null : node.getParent(index)); }
get a node's right child. mind you, the node may not exist. no problem
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * get a node's right child. mind you, the node may not exist. no * problem * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static Node getRightChild(final Node node, final int index) { return (node == null) ? null : node.getRight(index); }
get a node's left child. mind you, the node may not exist. no problem
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * get a node's left child. mind you, the node may not exist. no * problem * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static Node getLeftChild(final Node node, final int index) { return (node == null) ? null : node.getLeft(index); }
is this node its parent's left child? mind you, the node, or its parent, may not exist. no problem. if the node doesn't exist ... it's its non-existent parent's left child. If the node does exist but has no parent ... no, we're not the non-existent parent's left child. Otherwise (both the specified node AND its parent exist), check.
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * is this node its parent's left child? mind you, the node, or * its parent, may not exist. no problem. if the node doesn't * exist ... it's its non-existent parent's left child. If the * node does exist but has no parent ... no, we're not the * non-existent parent's left child. Otherwise (both the specified * node AND its parent exist), check. * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static boolean isLeftChild(final Node node, final int index) { return (node == null) ? true : ((node.getParent(index) == null) ? false : (node == node.getParent(index).getLeft(index))); }
is this node its parent's right child? mind you, the node, or its parent, may not exist. no problem. if the node doesn't exist ... it's its non-existent parent's right child. If the node does exist but has no parent ... no, we're not the non-existent parent's right child. Otherwise (both the specified node AND its parent exist), check.
Params:
  • node – the node (may be null) in question
  • index – the KEY or VALUE int
/** * is this node its parent's right child? mind you, the node, or * its parent, may not exist. no problem. if the node doesn't * exist ... it's its non-existent parent's right child. If the * node does exist but has no parent ... no, we're not the * non-existent parent's right child. Otherwise (both the * specified node AND its parent exist), check. * * @param node the node (may be null) in question * @param index the KEY or VALUE int */
private static boolean isRightChild(final Node node, final int index) { return (node == null) ? true : ((node.getParent(index) == null) ? false : (node == node.getParent(index).getRight(index))); }
do a rotate left. standard fare in the world of balanced trees
Params:
  • node – the node to be rotated
  • index – the KEY or VALUE int
/** * do a rotate left. standard fare in the world of balanced trees * * @param node the node to be rotated * @param index the KEY or VALUE int */
private void rotateLeft(final Node node, final int index) { Node rightChild = node.getRight(index); node.setRight(rightChild.getLeft(index), index); if (rightChild.getLeft(index) != null) { rightChild.getLeft(index).setParent(node, index); } rightChild.setParent(node.getParent(index), index); if (node.getParent(index) == null) { // node was the root ... now its right child is the root rootNode[index] = rightChild; } else if (node.getParent(index).getLeft(index) == node) { node.getParent(index).setLeft(rightChild, index); } else { node.getParent(index).setRight(rightChild, index); } rightChild.setLeft(node, index); node.setParent(rightChild, index); }
do a rotate right. standard fare in the world of balanced trees
Params:
  • node – the node to be rotated
  • index – the KEY or VALUE int
/** * do a rotate right. standard fare in the world of balanced trees * * @param node the node to be rotated * @param index the KEY or VALUE int */
private void rotateRight(final Node node, final int index) { Node leftChild = node.getLeft(index); node.setLeft(leftChild.getRight(index), index); if (leftChild.getRight(index) != null) { leftChild.getRight(index).setParent(node, index); } leftChild.setParent(node.getParent(index), index); if (node.getParent(index) == null) { // node was the root ... now its left child is the root rootNode[index] = leftChild; } else if (node.getParent(index).getRight(index) == node) { node.getParent(index).setRight(leftChild, index); } else { node.getParent(index).setLeft(leftChild, index); } leftChild.setRight(node, index); node.setParent(leftChild, index); }
complicated red-black insert stuff. Based on Sun's TreeMap implementation, though it's barely recognizable any more
Params:
  • insertedNode – the node to be inserted
  • index – the KEY or VALUE int
/** * complicated red-black insert stuff. Based on Sun's TreeMap * implementation, though it's barely recognizable any more * * @param insertedNode the node to be inserted * @param index the KEY or VALUE int */
private void doRedBlackInsert(final Node insertedNode, final int index) { Node currentNode = insertedNode; makeRed(currentNode, index); while ((currentNode != null) && (currentNode != rootNode[index]) && (isRed(currentNode.getParent(index), index))) { if (isLeftChild(getParent(currentNode, index), index)) { Node y = getRightChild(getGrandParent(currentNode, index), index); if (isRed(y, index)) { makeBlack(getParent(currentNode, index), index); makeBlack(y, index); makeRed(getGrandParent(currentNode, index), index); currentNode = getGrandParent(currentNode, index); } else { if (isRightChild(currentNode, index)) { currentNode = getParent(currentNode, index); rotateLeft(currentNode, index); } makeBlack(getParent(currentNode, index), index); makeRed(getGrandParent(currentNode, index), index); if (getGrandParent(currentNode, index) != null) { rotateRight(getGrandParent(currentNode, index), index); } } } else { // just like clause above, except swap left for right Node y = getLeftChild(getGrandParent(currentNode, index), index); if (isRed(y, index)) { makeBlack(getParent(currentNode, index), index); makeBlack(y, index); makeRed(getGrandParent(currentNode, index), index); currentNode = getGrandParent(currentNode, index); } else { if (isLeftChild(currentNode, index)) { currentNode = getParent(currentNode, index); rotateRight(currentNode, index); } makeBlack(getParent(currentNode, index), index); makeRed(getGrandParent(currentNode, index), index); if (getGrandParent(currentNode, index) != null) { rotateLeft(getGrandParent(currentNode, index), index); } } } } makeBlack(rootNode[index], index); }
complicated red-black delete stuff. Based on Sun's TreeMap implementation, though it's barely recognizable any more
Params:
  • deletedNode – the node to be deleted
/** * complicated red-black delete stuff. Based on Sun's TreeMap * implementation, though it's barely recognizable any more * * @param deletedNode the node to be deleted */
private void doRedBlackDelete(final Node deletedNode) { for (int index = FIRST_INDEX; index < NUMBER_OF_INDICES; index++) { // if deleted node has both left and children, swap with // the next greater node if ((deletedNode.getLeft(index) != null) && (deletedNode.getRight(index) != null)) { swapPosition(nextGreater(deletedNode, index), deletedNode, index); } Node replacement = ((deletedNode.getLeft(index) != null) ? deletedNode.getLeft(index) : deletedNode.getRight(index)); if (replacement != null) { replacement.setParent(deletedNode.getParent(index), index); if (deletedNode.getParent(index) == null) { rootNode[index] = replacement; } else if (deletedNode == deletedNode.getParent(index).getLeft(index)) { deletedNode.getParent(index).setLeft(replacement, index); } else { deletedNode.getParent(index).setRight(replacement, index); } deletedNode.setLeft(null, index); deletedNode.setRight(null, index); deletedNode.setParent(null, index); if (isBlack(deletedNode, index)) { doRedBlackDeleteFixup(replacement, index); } } else { // replacement is null if (deletedNode.getParent(index) == null) { // empty tree rootNode[index] = null; } else { // deleted node had no children if (isBlack(deletedNode, index)) { doRedBlackDeleteFixup(deletedNode, index); } if (deletedNode.getParent(index) != null) { if (deletedNode == deletedNode.getParent(index).getLeft(index)) { deletedNode.getParent(index).setLeft(null, index); } else { deletedNode.getParent(index).setRight(null, index); } deletedNode.setParent(null, index); } } } } shrink(); }
complicated red-black delete stuff. Based on Sun's TreeMap implementation, though it's barely recognizable any more. This rebalances the tree (somewhat, as red-black trees are not perfectly balanced -- perfect balancing takes longer)
Params:
  • replacementNode – the node being replaced
  • index – the KEY or VALUE int
/** * complicated red-black delete stuff. Based on Sun's TreeMap * implementation, though it's barely recognizable any more. This * rebalances the tree (somewhat, as red-black trees are not * perfectly balanced -- perfect balancing takes longer) * * @param replacementNode the node being replaced * @param index the KEY or VALUE int */
private void doRedBlackDeleteFixup(final Node replacementNode, final int index) { Node currentNode = replacementNode; while ((currentNode != rootNode[index]) && (isBlack(currentNode, index))) { if (isLeftChild(currentNode, index)) { Node siblingNode = getRightChild(getParent(currentNode, index), index); if (isRed(siblingNode, index)) { makeBlack(siblingNode, index); makeRed(getParent(currentNode, index), index); rotateLeft(getParent(currentNode, index), index); siblingNode = getRightChild(getParent(currentNode, index), index); } if (isBlack(getLeftChild(siblingNode, index), index) && isBlack(getRightChild(siblingNode, index), index)) { makeRed(siblingNode, index); currentNode = getParent(currentNode, index); } else { if (isBlack(getRightChild(siblingNode, index), index)) { makeBlack(getLeftChild(siblingNode, index), index); makeRed(siblingNode, index); rotateRight(siblingNode, index); siblingNode = getRightChild(getParent(currentNode, index), index); } copyColor(getParent(currentNode, index), siblingNode, index); makeBlack(getParent(currentNode, index), index); makeBlack(getRightChild(siblingNode, index), index); rotateLeft(getParent(currentNode, index), index); currentNode = rootNode[index]; } } else { Node siblingNode = getLeftChild(getParent(currentNode, index), index); if (isRed(siblingNode, index)) { makeBlack(siblingNode, index); makeRed(getParent(currentNode, index), index); rotateRight(getParent(currentNode, index), index); siblingNode = getLeftChild(getParent(currentNode, index), index); } if (isBlack(getRightChild(siblingNode, index), index) && isBlack(getLeftChild(siblingNode, index), index)) { makeRed(siblingNode, index); currentNode = getParent(currentNode, index); } else { if (isBlack(getLeftChild(siblingNode, index), index)) { makeBlack(getRightChild(siblingNode, index), index); makeRed(siblingNode, index); rotateLeft(siblingNode, index); siblingNode = getLeftChild(getParent(currentNode, index), index); } copyColor(getParent(currentNode, index), siblingNode, index); makeBlack(getParent(currentNode, index), index); makeBlack(getLeftChild(siblingNode, index), index); rotateRight(getParent(currentNode, index), index); currentNode = rootNode[index]; } } } makeBlack(currentNode, index); }
swap two nodes (except for their content), taking care of special cases where one is the other's parent ... hey, it happens.
Params:
  • x – one node
  • y – another node
  • index – the KEY or VALUE int
/** * swap two nodes (except for their content), taking care of * special cases where one is the other's parent ... hey, it * happens. * * @param x one node * @param y another node * @param index the KEY or VALUE int */
private void swapPosition(final Node x, final Node y, final int index) { // Save initial values. Node xFormerParent = x.getParent(index); Node xFormerLeftChild = x.getLeft(index); Node xFormerRightChild = x.getRight(index); Node yFormerParent = y.getParent(index); Node yFormerLeftChild = y.getLeft(index); Node yFormerRightChild = y.getRight(index); boolean xWasLeftChild = (x.getParent(index) != null) && (x == x.getParent(index).getLeft(index)); boolean yWasLeftChild = (y.getParent(index) != null) && (y == y.getParent(index).getLeft(index)); // Swap, handling special cases of one being the other's parent. if (x == yFormerParent) { // x was y's parent x.setParent(y, index); if (yWasLeftChild) { y.setLeft(x, index); y.setRight(xFormerRightChild, index); } else { y.setRight(x, index); y.setLeft(xFormerLeftChild, index); } } else { x.setParent(yFormerParent, index); if (yFormerParent != null) { if (yWasLeftChild) { yFormerParent.setLeft(x, index); } else { yFormerParent.setRight(x, index); } } y.setLeft(xFormerLeftChild, index); y.setRight(xFormerRightChild, index); } if (y == xFormerParent) { // y was x's parent y.setParent(x, index); if (xWasLeftChild) { x.setLeft(y, index); x.setRight(yFormerRightChild, index); } else { x.setRight(y, index); x.setLeft(yFormerLeftChild, index); } } else { y.setParent(xFormerParent, index); if (xFormerParent != null) { if (xWasLeftChild) { xFormerParent.setLeft(y, index); } else { xFormerParent.setRight(y, index); } } x.setLeft(yFormerLeftChild, index); x.setRight(yFormerRightChild, index); } // Fix children's parent pointers if (x.getLeft(index) != null) { x.getLeft(index).setParent(x, index); } if (x.getRight(index) != null) { x.getRight(index).setParent(x, index); } if (y.getLeft(index) != null) { y.getLeft(index).setParent(y, index); } if (y.getRight(index) != null) { y.getRight(index).setParent(y, index); } x.swapColors(y, index); // Check if root changed if (rootNode[index] == x) { rootNode[index] = y; } else if (rootNode[index] == y) { rootNode[index] = x; } }
check if an object is fit to be proper input ... has to be Comparable and non-null
Params:
  • o – the object being checked
  • index – the KEY or VALUE int (used to put the right word in the exception message)
Throws:
/** * check if an object is fit to be proper input ... has to be * Comparable and non-null * * @param o the object being checked * @param index the KEY or VALUE int (used to put the right word in the * exception message) * * @throws NullPointerException if o is null * @throws ClassCastException if o is not Comparable */
private static void checkNonNullComparable(final Object o, final int index) { if (o == null) { throw new NullPointerException(dataName[index] + " cannot be null"); } if (!(o instanceof Comparable)) { throw new ClassCastException(dataName[index] + " must be Comparable"); } }
check a key for validity (non-null and implements Comparable)
Params:
  • key – the key to be checked
Throws:
/** * check a key for validity (non-null and implements Comparable) * * @param key the key to be checked * * @throws NullPointerException if key is null * @throws ClassCastException if key is not Comparable */
private static void checkKey(final Object key) { checkNonNullComparable(key, KEY); }
check a value for validity (non-null and implements Comparable)
Params:
  • value – the value to be checked
Throws:
/** * check a value for validity (non-null and implements Comparable) * * @param value the value to be checked * * @throws NullPointerException if value is null * @throws ClassCastException if value is not Comparable */
private static void checkValue(final Object value) { checkNonNullComparable(value, VALUE); }
check a key and a value for validity (non-null and implements Comparable)
Params:
  • key – the key to be checked
  • value – the value to be checked
Throws:
/** * check a key and a value for validity (non-null and implements * Comparable) * * @param key the key to be checked * @param value the value to be checked * * @throws NullPointerException if key or value is null * @throws ClassCastException if key or value is not Comparable */
private static void checkKeyAndValue(final Object key, final Object value) { checkKey(key); checkValue(value); }
increment the modification count -- used to check for concurrent modification of the map through the map and through an Iterator from one of its Set or Collection views
/** * increment the modification count -- used to check for * concurrent modification of the map through the map and through * an Iterator from one of its Set or Collection views */
private void modify() { modifications++; }
bump up the size and note that the map has changed
/** * bump up the size and note that the map has changed */
private void grow() { modify(); nodeCount++; }
decrement the size and note that the map has changed
/** * decrement the size and note that the map has changed */
private void shrink() { modify(); nodeCount--; }
insert a node by its value
Params:
  • newNode – the node to be inserted
Throws:
/** * insert a node by its value * * @param newNode the node to be inserted * * @throws IllegalArgumentException if the node already exists * in the value mapping */
private void insertValue(final Node newNode) throws IllegalArgumentException { Node node = rootNode[VALUE]; while (true) { int cmp = compare(newNode.getData(VALUE), node.getData(VALUE)); if (cmp == 0) { throw new IllegalArgumentException( "Cannot store a duplicate value (\"" + newNode.getData(VALUE) + "\") in this Map"); } else if (cmp < 0) { if (node.getLeft(VALUE) != null) { node = node.getLeft(VALUE); } else { node.setLeft(newNode, VALUE); newNode.setParent(node, VALUE); doRedBlackInsert(newNode, VALUE); break; } } else { // cmp > 0 if (node.getRight(VALUE) != null) { node = node.getRight(VALUE); } else { node.setRight(newNode, VALUE); newNode.setParent(node, VALUE); doRedBlackInsert(newNode, VALUE); break; } } } } //-----------------------------------------------------------------------
Compares for equals as per the API.
Params:
  • obj – the object to compare to
  • type – the KEY or VALUE int
Returns:true if equal
/** * Compares for equals as per the API. * * @param obj the object to compare to * @param type the KEY or VALUE int * @return true if equal */
private boolean doEquals(Object obj, final int type) { if (obj == this) { return true; } if (obj instanceof Map == false) { return false; } Map other = (Map) obj; if (other.size() != size()) { return false; } if (nodeCount > 0) { try { for (MapIterator it = new ViewMapIterator(this, type); it.hasNext(); ) { Object key = it.next(); Object value = it.getValue(); if (value.equals(other.get(key)) == false) { return false; } } } catch (ClassCastException ex) { return false; } catch (NullPointerException ex) { return false; } } return true; }
Gets the hash code value for this map as per the API.
Params:
  • type – the KEY or VALUE int
Returns:the hash code value for this map
/** * Gets the hash code value for this map as per the API. * * @param type the KEY or VALUE int * @return the hash code value for this map */
private int doHashCode(final int type) { int total = 0; if (nodeCount > 0) { for (MapIterator it = new ViewMapIterator(this, type); it.hasNext(); ) { Object key = it.next(); Object value = it.getValue(); total += (key.hashCode() ^ value.hashCode()); } } return total; }
Gets the string form of this map as per AbstractMap.
Params:
  • type – the KEY or VALUE int
Returns:the string form of this map
/** * Gets the string form of this map as per AbstractMap. * * @param type the KEY or VALUE int * @return the string form of this map */
private String doToString(final int type) { if (nodeCount == 0) { return "{}"; } StringBuffer buf = new StringBuffer(nodeCount * 32); buf.append('{'); MapIterator it = new ViewMapIterator(this, type); boolean hasNext = it.hasNext(); while (hasNext) { Object key = it.next(); Object value = it.getValue(); buf.append(key == this ? "(this Map)" : key) .append('=') .append(value == this ? "(this Map)" : value); hasNext = it.hasNext(); if (hasNext) { buf.append(", "); } } buf.append('}'); return buf.toString(); } //-----------------------------------------------------------------------
A view of this map.
/** * A view of this map. */
static class View extends AbstractSet {
The parent map.
/** The parent map. */
protected final TreeBidiMap main;
Whether to return KEY or VALUE order.
/** Whether to return KEY or VALUE order. */
protected final int orderType;
Whether to return KEY, VALUE, MAPENTRY or INVERSEMAPENTRY data.
/** Whether to return KEY, VALUE, MAPENTRY or INVERSEMAPENTRY data. */
protected final int dataType;
Constructor.
Params:
  • main – the main map
  • orderType – the KEY or VALUE int for the order
  • dataType – the KEY, VALUE, MAPENTRY or INVERSEMAPENTRY int
/** * Constructor. * * @param main the main map * @param orderType the KEY or VALUE int for the order * @param dataType the KEY, VALUE, MAPENTRY or INVERSEMAPENTRY int */
View(final TreeBidiMap main, final int orderType, final int dataType) { super(); this.main = main; this.orderType = orderType; this.dataType = dataType; } public Iterator iterator() { return new ViewIterator(main, orderType, dataType); } public int size() { return main.size(); } public boolean contains(final Object obj) { checkNonNullComparable(obj, dataType); return (main.lookup((Comparable) obj, dataType) != null); } public boolean remove(final Object obj) { return (main.doRemove((Comparable) obj, dataType) != null); } public void clear() { main.clear(); } } //-----------------------------------------------------------------------
An iterator over the map.
/** * An iterator over the map. */
static class ViewIterator implements OrderedIterator {
The parent map.
/** The parent map. */
protected final TreeBidiMap main;
Whether to return KEY or VALUE order.
/** Whether to return KEY or VALUE order. */
protected final int orderType;
Whether to return KEY, VALUE, MAPENTRY or INVERSEMAPENTRY data.
/** Whether to return KEY, VALUE, MAPENTRY or INVERSEMAPENTRY data. */
protected final int dataType;
The last node returned by the iterator.
/** The last node returned by the iterator. */
protected Node lastReturnedNode;
The next node to be returned by the iterator.
/** The next node to be returned by the iterator. */
protected Node nextNode;
The previous node in the sequence returned by the iterator.
/** The previous node in the sequence returned by the iterator. */
protected Node previousNode;
The modification count.
/** The modification count. */
private int expectedModifications;
Constructor.
Params:
  • main – the main map
  • orderType – the KEY or VALUE int for the order
  • dataType – the KEY, VALUE, MAPENTRY or INVERSEMAPENTRY int
/** * Constructor. * * @param main the main map * @param orderType the KEY or VALUE int for the order * @param dataType the KEY, VALUE, MAPENTRY or INVERSEMAPENTRY int */
ViewIterator(final TreeBidiMap main, final int orderType, final int dataType) { super(); this.main = main; this.orderType = orderType; this.dataType = dataType; expectedModifications = main.modifications; nextNode = leastNode(main.rootNode[orderType], orderType); lastReturnedNode = null; previousNode = null; } public final boolean hasNext() { return (nextNode != null); } public final Object next() { if (nextNode == null) { throw new NoSuchElementException(); } if (main.modifications != expectedModifications) { throw new ConcurrentModificationException(); } lastReturnedNode = nextNode; previousNode = nextNode; nextNode = main.nextGreater(nextNode, orderType); return doGetData(); } public boolean hasPrevious() { return (previousNode != null); } public Object previous() { if (previousNode == null) { throw new NoSuchElementException(); } if (main.modifications != expectedModifications) { throw new ConcurrentModificationException(); } nextNode = lastReturnedNode; if (nextNode == null) { nextNode = main.nextGreater(previousNode, orderType); } lastReturnedNode = previousNode; previousNode = main.nextSmaller(previousNode, orderType); return doGetData(); }
Gets the data value for the lastReturnedNode field.
Returns:the data value
/** * Gets the data value for the lastReturnedNode field. * @return the data value */
protected Object doGetData() { switch (dataType) { case KEY: return lastReturnedNode.getKey(); case VALUE: return lastReturnedNode.getValue(); case MAPENTRY: return lastReturnedNode; case INVERSEMAPENTRY: return new UnmodifiableMapEntry(lastReturnedNode.getValue(), lastReturnedNode.getKey()); } return null; } public final void remove() { if (lastReturnedNode == null) { throw new IllegalStateException(); } if (main.modifications != expectedModifications) { throw new ConcurrentModificationException(); } main.doRedBlackDelete(lastReturnedNode); expectedModifications++; lastReturnedNode = null; if (nextNode == null) { previousNode = TreeBidiMap.greatestNode(main.rootNode[orderType], orderType); } else { previousNode = main.nextSmaller(nextNode, orderType); } } } //-----------------------------------------------------------------------
An iterator over the map.
/** * An iterator over the map. */
static class ViewMapIterator extends ViewIterator implements OrderedMapIterator { private final int oppositeType;
Constructor.
Params:
  • main – the main map
  • orderType – the KEY or VALUE int for the order
/** * Constructor. * * @param main the main map * @param orderType the KEY or VALUE int for the order */
ViewMapIterator(final TreeBidiMap main, final int orderType) { super(main, orderType, orderType); this.oppositeType = oppositeIndex(dataType); } public Object getKey() { if (lastReturnedNode == null) { throw new IllegalStateException("Iterator getKey() can only be called after next() and before remove()"); } return lastReturnedNode.getData(dataType); } public Object getValue() { if (lastReturnedNode == null) { throw new IllegalStateException("Iterator getValue() can only be called after next() and before remove()"); } return lastReturnedNode.getData(oppositeType); } public Object setValue(final Object obj) { throw new UnsupportedOperationException(); } } //-----------------------------------------------------------------------
A view of this map.
/** * A view of this map. */
static class EntryView extends View { private final int oppositeType;
Constructor.
Params:
  • main – the main map
  • orderType – the KEY or VALUE int for the order
  • dataType – the MAPENTRY or INVERSEMAPENTRY int for the returned data
/** * Constructor. * * @param main the main map * @param orderType the KEY or VALUE int for the order * @param dataType the MAPENTRY or INVERSEMAPENTRY int for the returned data */
EntryView(final TreeBidiMap main, final int orderType, final int dataType) { super(main, orderType, dataType); this.oppositeType = TreeBidiMap.oppositeIndex(orderType); } public boolean contains(Object obj) { if (obj instanceof Map.Entry == false) { return false; } Map.Entry entry = (Map.Entry) obj; Object value = entry.getValue(); Node node = main.lookup((Comparable) entry.getKey(), orderType); return (node != null && node.getData(oppositeType).equals(value)); } public boolean remove(Object obj) { if (obj instanceof Map.Entry == false) { return false; } Map.Entry entry = (Map.Entry) obj; Object value = entry.getValue(); Node node = main.lookup((Comparable) entry.getKey(), orderType); if (node != null && node.getData(oppositeType).equals(value)) { main.doRedBlackDelete(node); return true; } return false; } } //-----------------------------------------------------------------------
A node used to store the data.
/** * A node used to store the data. */
static class Node implements Map.Entry, KeyValue { private Comparable[] data; private Node[] leftNode; private Node[] rightNode; private Node[] parentNode; private boolean[] blackColor; private int hashcodeValue; private boolean calculatedHashCode;
Make a new cell with given key and value, and with null links, and black (true) colors.
Params:
  • key –
  • value –
/** * Make a new cell with given key and value, and with null * links, and black (true) colors. * * @param key * @param value */
Node(final Comparable key, final Comparable value) { super(); data = new Comparable[] { key, value }; leftNode = new Node[2]; rightNode = new Node[2]; parentNode = new Node[2]; blackColor = new boolean[] { true, true }; calculatedHashCode = false; }
Get the specified data.
Params:
  • index – the KEY or VALUE int
Returns:the key or value
/** * Get the specified data. * * @param index the KEY or VALUE int * @return the key or value */
private Comparable getData(final int index) { return data[index]; }
Set this node's left node.
Params:
  • node – the new left node
  • index – the KEY or VALUE int
/** * Set this node's left node. * * @param node the new left node * @param index the KEY or VALUE int */
private void setLeft(final Node node, final int index) { leftNode[index] = node; }
Get the left node.
Params:
  • index – the KEY or VALUE int
Returns:the left node, may be null
/** * Get the left node. * * @param index the KEY or VALUE int * @return the left node, may be null */
private Node getLeft(final int index) { return leftNode[index]; }
Set this node's right node.
Params:
  • node – the new right node
  • index – the KEY or VALUE int
/** * Set this node's right node. * * @param node the new right node * @param index the KEY or VALUE int */
private void setRight(final Node node, final int index) { rightNode[index] = node; }
Get the right node.
Params:
  • index – the KEY or VALUE int
Returns:the right node, may be null
/** * Get the right node. * * @param index the KEY or VALUE int * @return the right node, may be null */
private Node getRight(final int index) { return rightNode[index]; }
Set this node's parent node.
Params:
  • node – the new parent node
  • index – the KEY or VALUE int
/** * Set this node's parent node. * * @param node the new parent node * @param index the KEY or VALUE int */
private void setParent(final Node node, final int index) { parentNode[index] = node; }
Get the parent node.
Params:
  • index – the KEY or VALUE int
Returns:the parent node, may be null
/** * Get the parent node. * * @param index the KEY or VALUE int * @return the parent node, may be null */
private Node getParent(final int index) { return parentNode[index]; }
Exchange colors with another node.
Params:
  • node – the node to swap with
  • index – the KEY or VALUE int
/** * Exchange colors with another node. * * @param node the node to swap with * @param index the KEY or VALUE int */
private void swapColors(final Node node, final int index) { // Swap colors -- old hacker's trick blackColor[index] ^= node.blackColor[index]; node.blackColor[index] ^= blackColor[index]; blackColor[index] ^= node.blackColor[index]; }
Is this node black?
Params:
  • index – the KEY or VALUE int
Returns:true if black (which is represented as a true boolean)
/** * Is this node black? * * @param index the KEY or VALUE int * @return true if black (which is represented as a true boolean) */
private boolean isBlack(final int index) { return blackColor[index]; }
Is this node red?
Params:
  • index – the KEY or VALUE int
Returns:true if non-black
/** * Is this node red? * * @param index the KEY or VALUE int * @return true if non-black */
private boolean isRed(final int index) { return !blackColor[index]; }
Make this node black.
Params:
  • index – the KEY or VALUE int
/** * Make this node black. * * @param index the KEY or VALUE int */
private void setBlack(final int index) { blackColor[index] = true; }
Make this node red.
Params:
  • index – the KEY or VALUE int
/** * Make this node red. * * @param index the KEY or VALUE int */
private void setRed(final int index) { blackColor[index] = false; }
Make this node the same color as another
Params:
  • node – the node whose color we're adopting
  • index – the KEY or VALUE int
/** * Make this node the same color as another * * @param node the node whose color we're adopting * @param index the KEY or VALUE int */
private void copyColor(final Node node, final int index) { blackColor[index] = node.blackColor[index]; } //-------------------------------------------------------------------
Gets the key.
Returns:the key corresponding to this entry.
/** * Gets the key. * * @return the key corresponding to this entry. */
public Object getKey() { return data[KEY]; }
Gets the value.
Returns:the value corresponding to this entry.
/** * Gets the value. * * @return the value corresponding to this entry. */
public Object getValue() { return data[VALUE]; }
Optional operation that is not permitted in this implementation
Params:
  • ignored –
Throws:
Returns:does not return
/** * Optional operation that is not permitted in this implementation * * @param ignored * @return does not return * @throws UnsupportedOperationException always */
public Object setValue(final Object ignored) throws UnsupportedOperationException { throw new UnsupportedOperationException( "Map.Entry.setValue is not supported"); }
Compares the specified object with this entry for equality. Returns true if the given object is also a map entry and the two entries represent the same mapping.
Params:
  • obj – the object to be compared for equality with this entry.
Returns:true if the specified object is equal to this entry.
/** * Compares the specified object with this entry for equality. * Returns true if the given object is also a map entry and * the two entries represent the same mapping. * * @param obj the object to be compared for equality with this entry. * @return true if the specified object is equal to this entry. */
public boolean equals(final Object obj) { if (obj == this) { return true; } if (!(obj instanceof Map.Entry)) { return false; } Map.Entry e = (Map.Entry) obj; return data[KEY].equals(e.getKey()) && data[VALUE].equals(e.getValue()); }
Returns:the hash code value for this map entry.
/** * @return the hash code value for this map entry. */
public int hashCode() { if (!calculatedHashCode) { hashcodeValue = data[KEY].hashCode() ^ data[VALUE].hashCode(); calculatedHashCode = true; } return hashcodeValue; } } //-----------------------------------------------------------------------
A node used to store the data.
/** * A node used to store the data. */
static class Inverse implements OrderedBidiMap {
The parent map.
/** The parent map. */
private final TreeBidiMap main;
Store the keySet once created.
/** Store the keySet once created. */
private Set keySet;
Store the valuesSet once created.
/** Store the valuesSet once created. */
private Set valuesSet;
Store the entrySet once created.
/** Store the entrySet once created. */
private Set entrySet;
Constructor.
Params:
  • main – the main map
/** * Constructor. * @param main the main map */
Inverse(final TreeBidiMap main) { super(); this.main = main; } public int size() { return main.size(); } public boolean isEmpty() { return main.isEmpty(); } public Object get(final Object key) { return main.getKey(key); } public Object getKey(final Object value) { return main.get(value); } public boolean containsKey(final Object key) { return main.containsValue(key); } public boolean containsValue(final Object value) { return main.containsKey(value); } public Object firstKey() { if (main.nodeCount == 0) { throw new NoSuchElementException("Map is empty"); } return TreeBidiMap.leastNode(main.rootNode[VALUE], VALUE).getValue(); } public Object lastKey() { if (main.nodeCount == 0) { throw new NoSuchElementException("Map is empty"); } return TreeBidiMap.greatestNode(main.rootNode[VALUE], VALUE).getValue(); } public Object nextKey(Object key) { checkKey(key); Node node = main.nextGreater(main.lookup((Comparable) key, VALUE), VALUE); return (node == null ? null : node.getValue()); } public Object previousKey(Object key) { checkKey(key); Node node = main.nextSmaller(main.lookup((Comparable) key, VALUE), VALUE); return (node == null ? null : node.getValue()); } public Object put(final Object key, final Object value) { return main.doPut((Comparable) value, (Comparable) key, VALUE); } public void putAll(Map map) { Iterator it = map.entrySet().iterator(); while (it.hasNext()) { Map.Entry entry = (Map.Entry) it.next(); put(entry.getKey(), entry.getValue()); } } public Object remove(final Object key) { return main.removeValue(key); } public Object removeValue(final Object value) { return main.remove(value); } public void clear() { main.clear(); } public Set keySet() { if (keySet == null) { keySet = new View(main, VALUE, VALUE); } return keySet; } public Collection values() { if (valuesSet == null) { valuesSet = new View(main, VALUE, KEY); } return valuesSet; } public Set entrySet() { if (entrySet == null) { return new EntryView(main, VALUE, INVERSEMAPENTRY); } return entrySet; } public MapIterator mapIterator() { if (isEmpty()) { return EmptyOrderedMapIterator.INSTANCE; } return new ViewMapIterator(main, VALUE); } public OrderedMapIterator orderedMapIterator() { if (isEmpty()) { return EmptyOrderedMapIterator.INSTANCE; } return new ViewMapIterator(main, VALUE); } public BidiMap inverseBidiMap() { return main; } public OrderedBidiMap inverseOrderedBidiMap() { return main; } public boolean equals(Object obj) { return main.doEquals(obj, VALUE); } public int hashCode() { return main.doHashCode(VALUE); } public String toString() { return main.doToString(VALUE); } } }