// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf.util;

import static com.google.common.math.IntMath.checkedAdd;
import static com.google.common.math.IntMath.checkedSubtract;
import static com.google.common.math.LongMath.checkedAdd;
import static com.google.common.math.LongMath.checkedMultiply;
import static com.google.common.math.LongMath.checkedSubtract;

import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.protobuf.Duration;
import com.google.protobuf.Timestamp;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Comparator;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.Locale;
import java.util.TimeZone;

Utilities to help create/manipulate protobuf/timestamp.proto. All operations throw an IllegalArgumentException if the input(s) are not valid.
/** * Utilities to help create/manipulate {@code protobuf/timestamp.proto}. All operations throw an * {@link IllegalArgumentException} if the input(s) are not {@linkplain #isValid(Timestamp) valid}. */
public final class Timestamps { // Timestamp for "0001-01-01T00:00:00Z" static final long TIMESTAMP_SECONDS_MIN = -62135596800L; // Timestamp for "9999-12-31T23:59:59Z" static final long TIMESTAMP_SECONDS_MAX = 253402300799L; static final long NANOS_PER_SECOND = 1000000000; static final long NANOS_PER_MILLISECOND = 1000000; static final long NANOS_PER_MICROSECOND = 1000; static final long MILLIS_PER_SECOND = 1000; static final long MICROS_PER_SECOND = 1000000;
A constant holding the minimum valid Timestamp, 0001-01-01T00:00:00Z.
/** A constant holding the minimum valid {@link Timestamp}, {@code 0001-01-01T00:00:00Z}. */
public static final Timestamp MIN_VALUE = Timestamp.newBuilder().setSeconds(TIMESTAMP_SECONDS_MIN).setNanos(0).build();
A constant holding the maximum valid Timestamp, 9999-12-31T23:59:59.999999999Z.
/** * A constant holding the maximum valid {@link Timestamp}, {@code 9999-12-31T23:59:59.999999999Z}. */
public static final Timestamp MAX_VALUE = Timestamp.newBuilder().setSeconds(TIMESTAMP_SECONDS_MAX).setNanos(999999999).build();
A constant holding the Timestamp of epoch time, 1970-01-01T00:00:00.000000000Z.
/** * A constant holding the {@link Timestamp} of epoch time, {@code 1970-01-01T00:00:00.000000000Z}. */
public static final Timestamp EPOCH = Timestamp.newBuilder().setSeconds(0).setNanos(0).build(); private static final ThreadLocal<SimpleDateFormat> timestampFormat = new ThreadLocal<SimpleDateFormat>() { @Override protected SimpleDateFormat initialValue() { return createTimestampFormat(); } }; private static SimpleDateFormat createTimestampFormat() { SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss", Locale.ENGLISH); GregorianCalendar calendar = new GregorianCalendar(TimeZone.getTimeZone("UTC")); // We use Proleptic Gregorian Calendar (i.e., Gregorian calendar extends // backwards to year one) for timestamp formating. calendar.setGregorianChange(new Date(Long.MIN_VALUE)); sdf.setCalendar(calendar); return sdf; } private Timestamps() {} private static final Comparator<Timestamp> COMPARATOR = new Comparator<Timestamp>() { @Override public int compare(Timestamp t1, Timestamp t2) { checkValid(t1); checkValid(t2); int secDiff = Long.compare(t1.getSeconds(), t2.getSeconds()); return (secDiff != 0) ? secDiff : Integer.compare(t1.getNanos(), t2.getNanos()); } };
Returns a Comparator for Timestamps which sorts in increasing chronological order. Nulls and invalid Timestamps are not allowed (see isValid).
/** * Returns a {@link Comparator} for {@link Timestamp Timestamps} which sorts in increasing * chronological order. Nulls and invalid {@link Timestamp Timestamps} are not allowed (see * {@link #isValid}). */
public static Comparator<Timestamp> comparator() { return COMPARATOR; }
Compares two timestamps. The value returned is identical to what would be returned by: Timestamps.comparator().compare(x, y).
Returns:the value 0 if x == y; a value less than 0 if x < y; and a value greater than 0 if x > y
/** * Compares two timestamps. The value returned is identical to what would be returned by: {@code * Timestamps.comparator().compare(x, y)}. * * @return the value {@code 0} if {@code x == y}; a value less than {@code 0} if {@code x < y}; * and a value greater than {@code 0} if {@code x > y} */
public static int compare(Timestamp x, Timestamp y) { return COMPARATOR.compare(x, y); }
Returns true if the given Timestamp is valid. The seconds value must be in the range [-62,135,596,800, +253,402,300,799] (i.e., between 0001-01-01T00:00:00Z and 9999-12-31T23:59:59Z). The nanos value must be in the range [0, +999,999,999].

Note: Negative second values with fractional seconds must still have non-negative nanos values that count forward in time.

/** * Returns true if the given {@link Timestamp} is valid. The {@code seconds} value must be in the * range [-62,135,596,800, +253,402,300,799] (i.e., between 0001-01-01T00:00:00Z and * 9999-12-31T23:59:59Z). The {@code nanos} value must be in the range [0, +999,999,999]. * * <p><b>Note:</b> Negative second values with fractional seconds must still have non-negative * nanos values that count forward in time. */
public static boolean isValid(Timestamp timestamp) { return isValid(timestamp.getSeconds(), timestamp.getNanos()); }
Returns true if the given number of seconds and nanos is a valid Timestamp. The seconds value must be in the range [-62,135,596,800, +253,402,300,799] (i.e., between 0001-01-01T00:00:00Z and 9999-12-31T23:59:59Z). The nanos value must be in the range [0, +999,999,999].

Note: Negative second values with fractional seconds must still have non-negative nanos values that count forward in time.

/** * Returns true if the given number of seconds and nanos is a valid {@link Timestamp}. The {@code * seconds} value must be in the range [-62,135,596,800, +253,402,300,799] (i.e., between * 0001-01-01T00:00:00Z and 9999-12-31T23:59:59Z). The {@code nanos} value must be in the range * [0, +999,999,999]. * * <p><b>Note:</b> Negative second values with fractional seconds must still have non-negative * nanos values that count forward in time. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static boolean isValid(long seconds, int nanos) { if (seconds < TIMESTAMP_SECONDS_MIN || seconds > TIMESTAMP_SECONDS_MAX) { return false; } if (nanos < 0 || nanos >= NANOS_PER_SECOND) { return false; } return true; }
Throws an IllegalArgumentException if the given Timestamp is not valid.
/** Throws an {@link IllegalArgumentException} if the given {@link Timestamp} is not valid. */
@CanIgnoreReturnValue public static Timestamp checkValid(Timestamp timestamp) { long seconds = timestamp.getSeconds(); int nanos = timestamp.getNanos(); if (!isValid(seconds, nanos)) { throw new IllegalArgumentException( String.format( "Timestamp is not valid. See proto definition for valid values. " + "Seconds (%s) must be in range [-62,135,596,800, +253,402,300,799]. " + "Nanos (%s) must be in range [0, +999,999,999].", seconds, nanos)); } return timestamp; }
Builds the given builder and throws an IllegalArgumentException if it is not valid. See checkValid(Timestamp).
Returns:A valid, built Timestamp.
/** * Builds the given builder and throws an {@link IllegalArgumentException} if it is not valid. See * {@link #checkValid(Timestamp)}. * * @return A valid, built {@link Timestamp}. */
public static Timestamp checkValid(Timestamp.Builder timestampBuilder) { return checkValid(timestampBuilder.build()); }
Convert Timestamp to RFC 3339 date string format. The output will always be Z-normalized and uses 3, 6 or 9 fractional digits as required to represent the exact value. Note that Timestamp can only represent time from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. See https://www.ietf.org/rfc/rfc3339.txt

Example of generated format: "1972-01-01T10:00:20.021Z"

Throws:
Returns:The string representation of the given timestamp.
/** * Convert Timestamp to RFC 3339 date string format. The output will always be Z-normalized and * uses 3, 6 or 9 fractional digits as required to represent the exact value. Note that Timestamp * can only represent time from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. See * https://www.ietf.org/rfc/rfc3339.txt * * <p>Example of generated format: "1972-01-01T10:00:20.021Z" * * @return The string representation of the given timestamp. * @throws IllegalArgumentException if the given timestamp is not in the valid range. */
public static String toString(Timestamp timestamp) { checkValid(timestamp); long seconds = timestamp.getSeconds(); int nanos = timestamp.getNanos(); StringBuilder result = new StringBuilder(); // Format the seconds part. Date date = new Date(seconds * MILLIS_PER_SECOND); result.append(timestampFormat.get().format(date)); // Format the nanos part. if (nanos != 0) { result.append("."); result.append(formatNanos(nanos)); } result.append("Z"); return result.toString(); }
Parse from RFC 3339 date string to Timestamp. This method accepts all outputs of toString(Timestamp) and it also accepts any fractional digits (or none) and any offset as long as they fit into nano-seconds precision.

Example of accepted format: "1972-01-01T10:00:20.021-05:00"

Throws:
Returns:A Timestamp parsed from the string.
/** * Parse from RFC 3339 date string to Timestamp. This method accepts all outputs of {@link * #toString(Timestamp)} and it also accepts any fractional digits (or none) and any offset as * long as they fit into nano-seconds precision. * * <p>Example of accepted format: "1972-01-01T10:00:20.021-05:00" * * @return A Timestamp parsed from the string. * @throws ParseException if parsing fails. */
public static Timestamp parse(String value) throws ParseException { int dayOffset = value.indexOf('T'); if (dayOffset == -1) { throw new ParseException("Failed to parse timestamp: invalid timestamp \"" + value + "\"", 0); } int timezoneOffsetPosition = value.indexOf('Z', dayOffset); if (timezoneOffsetPosition == -1) { timezoneOffsetPosition = value.indexOf('+', dayOffset); } if (timezoneOffsetPosition == -1) { timezoneOffsetPosition = value.indexOf('-', dayOffset); } if (timezoneOffsetPosition == -1) { throw new ParseException("Failed to parse timestamp: missing valid timezone offset.", 0); } // Parse seconds and nanos. String timeValue = value.substring(0, timezoneOffsetPosition); String secondValue = timeValue; String nanoValue = ""; int pointPosition = timeValue.indexOf('.'); if (pointPosition != -1) { secondValue = timeValue.substring(0, pointPosition); nanoValue = timeValue.substring(pointPosition + 1); } Date date = timestampFormat.get().parse(secondValue); long seconds = date.getTime() / MILLIS_PER_SECOND; int nanos = nanoValue.isEmpty() ? 0 : parseNanos(nanoValue); // Parse timezone offsets. if (value.charAt(timezoneOffsetPosition) == 'Z') { if (value.length() != timezoneOffsetPosition + 1) { throw new ParseException( "Failed to parse timestamp: invalid trailing data \"" + value.substring(timezoneOffsetPosition) + "\"", 0); } } else { String offsetValue = value.substring(timezoneOffsetPosition + 1); long offset = parseTimezoneOffset(offsetValue); if (value.charAt(timezoneOffsetPosition) == '+') { seconds -= offset; } else { seconds += offset; } } try { return normalizedTimestamp(seconds, nanos); } catch (IllegalArgumentException e) { throw new ParseException("Failed to parse timestamp: timestamp is out of range.", 0); } }
Create a Timestamp from the number of seconds elapsed from the epoch.
/** Create a Timestamp from the number of seconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static Timestamp fromSeconds(long seconds) { return normalizedTimestamp(seconds, 0); }
Convert a Timestamp to the number of seconds elapsed from the epoch.

The result will be rounded down to the nearest second. E.g., if the timestamp represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 second.

/** * Convert a Timestamp to the number of seconds elapsed from the epoch. * * <p>The result will be rounded down to the nearest second. E.g., if the timestamp represents * "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 second. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static long toSeconds(Timestamp timestamp) { return checkValid(timestamp).getSeconds(); }
Create a Timestamp from the number of milliseconds elapsed from the epoch.
/** Create a Timestamp from the number of milliseconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static Timestamp fromMillis(long milliseconds) { return normalizedTimestamp( milliseconds / MILLIS_PER_SECOND, (int) (milliseconds % MILLIS_PER_SECOND * NANOS_PER_MILLISECOND)); }
Convert a Timestamp to the number of milliseconds elapsed from the epoch.

The result will be rounded down to the nearest millisecond. E.g., if the timestamp represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 millisecond.

/** * Convert a Timestamp to the number of milliseconds elapsed from the epoch. * * <p>The result will be rounded down to the nearest millisecond. E.g., if the timestamp * represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 millisecond. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static long toMillis(Timestamp timestamp) { checkValid(timestamp); return checkedAdd( checkedMultiply(timestamp.getSeconds(), MILLIS_PER_SECOND), timestamp.getNanos() / NANOS_PER_MILLISECOND); }
Create a Timestamp from the number of microseconds elapsed from the epoch.
/** Create a Timestamp from the number of microseconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static Timestamp fromMicros(long microseconds) { return normalizedTimestamp( microseconds / MICROS_PER_SECOND, (int) (microseconds % MICROS_PER_SECOND * NANOS_PER_MICROSECOND)); }
Convert a Timestamp to the number of microseconds elapsed from the epoch.

The result will be rounded down to the nearest microsecond. E.g., if the timestamp represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 microsecond.

/** * Convert a Timestamp to the number of microseconds elapsed from the epoch. * * <p>The result will be rounded down to the nearest microsecond. E.g., if the timestamp * represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 microsecond. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static long toMicros(Timestamp timestamp) { checkValid(timestamp); return checkedAdd( checkedMultiply(timestamp.getSeconds(), MICROS_PER_SECOND), timestamp.getNanos() / NANOS_PER_MICROSECOND); }
Create a Timestamp from the number of nanoseconds elapsed from the epoch.
/** Create a Timestamp from the number of nanoseconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static Timestamp fromNanos(long nanoseconds) { return normalizedTimestamp( nanoseconds / NANOS_PER_SECOND, (int) (nanoseconds % NANOS_PER_SECOND)); }
Convert a Timestamp to the number of nanoseconds elapsed from the epoch.
/** Convert a Timestamp to the number of nanoseconds elapsed from the epoch. */
@SuppressWarnings("GoodTime") // this is a legacy conversion API public static long toNanos(Timestamp timestamp) { checkValid(timestamp); return checkedAdd( checkedMultiply(timestamp.getSeconds(), NANOS_PER_SECOND), timestamp.getNanos()); }
Calculate the difference between two timestamps.
/** Calculate the difference between two timestamps. */
public static Duration between(Timestamp from, Timestamp to) { checkValid(from); checkValid(to); return Durations.normalizedDuration( checkedSubtract(to.getSeconds(), from.getSeconds()), checkedSubtract(to.getNanos(), from.getNanos())); }
Add a duration to a timestamp.
/** Add a duration to a timestamp. */
public static Timestamp add(Timestamp start, Duration length) { checkValid(start); Durations.checkValid(length); return normalizedTimestamp( checkedAdd(start.getSeconds(), length.getSeconds()), checkedAdd(start.getNanos(), length.getNanos())); }
Subtract a duration from a timestamp.
/** Subtract a duration from a timestamp. */
public static Timestamp subtract(Timestamp start, Duration length) { checkValid(start); Durations.checkValid(length); return normalizedTimestamp( checkedSubtract(start.getSeconds(), length.getSeconds()), checkedSubtract(start.getNanos(), length.getNanos())); } static Timestamp normalizedTimestamp(long seconds, int nanos) { if (nanos <= -NANOS_PER_SECOND || nanos >= NANOS_PER_SECOND) { seconds = checkedAdd(seconds, nanos / NANOS_PER_SECOND); nanos = (int) (nanos % NANOS_PER_SECOND); } if (nanos < 0) { nanos = (int) (nanos + NANOS_PER_SECOND); // no overflow since nanos is negative (and we're adding) seconds = checkedSubtract(seconds, 1); } Timestamp timestamp = Timestamp.newBuilder().setSeconds(seconds).setNanos(nanos).build(); return checkValid(timestamp); } private static long parseTimezoneOffset(String value) throws ParseException { int pos = value.indexOf(':'); if (pos == -1) { throw new ParseException("Invalid offset value: " + value, 0); } String hours = value.substring(0, pos); String minutes = value.substring(pos + 1); return (Long.parseLong(hours) * 60 + Long.parseLong(minutes)) * 60; } static int parseNanos(String value) throws ParseException { int result = 0; for (int i = 0; i < 9; ++i) { result = result * 10; if (i < value.length()) { if (value.charAt(i) < '0' || value.charAt(i) > '9') { throw new ParseException("Invalid nanoseconds.", 0); } result += value.charAt(i) - '0'; } } return result; }
Format the nano part of a timestamp or a duration.
/** Format the nano part of a timestamp or a duration. */
static String formatNanos(int nanos) { // Determine whether to use 3, 6, or 9 digits for the nano part. if (nanos % NANOS_PER_MILLISECOND == 0) { return String.format(Locale.ENGLISH, "%1$03d", nanos / NANOS_PER_MILLISECOND); } else if (nanos % NANOS_PER_MICROSECOND == 0) { return String.format(Locale.ENGLISH, "%1$06d", nanos / NANOS_PER_MICROSECOND); } else { return String.format(Locale.ENGLISH, "%1$09d", nanos); } } }