// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////

package com.google.crypto.tink.subtle;

import com.google.crypto.tink.PublicKeySign;
import com.google.crypto.tink.subtle.Enums.HashType;
import java.math.BigInteger;
import java.security.GeneralSecurityException;
import java.security.KeyFactory;
import java.security.MessageDigest;
import java.security.interfaces.RSAPrivateCrtKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.RSAPublicKeySpec;
import javax.crypto.Cipher;

RsaSsaPss (i.e. RSA Signature Schemes with Appendix (SSA) with PSS encoding) signing with JCE.
/** * RsaSsaPss (i.e. RSA Signature Schemes with Appendix (SSA) with PSS encoding) signing with JCE. */
public final class RsaSsaPssSignJce implements PublicKeySign { private final RSAPrivateCrtKey privateKey; private final RSAPublicKey publicKey; private final HashType sigHash; private final HashType mgf1Hash; private final int saltLength; private static final String RAW_RSA_ALGORITHM = "RSA/ECB/NOPADDING"; public RsaSsaPssSignJce( final RSAPrivateCrtKey priv, HashType sigHash, HashType mgf1Hash, int saltLength) throws GeneralSecurityException { Validators.validateSignatureHash(sigHash); Validators.validateRsaModulusSize(priv.getModulus().bitLength()); this.privateKey = priv; KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("RSA"); this.publicKey = (RSAPublicKey) kf.generatePublic(new RSAPublicKeySpec(priv.getModulus(), priv.getPublicExponent())); this.sigHash = sigHash; this.mgf1Hash = mgf1Hash; this.saltLength = saltLength; } @Override public byte[] sign(final byte[] data) throws GeneralSecurityException { // https://tools.ietf.org/html/rfc8017#section-8.1.1. int modBits = publicKey.getModulus().bitLength(); byte[] em = emsaPssEncode(data, modBits - 1); return rsasp1(em); } private byte[] rsasp1(byte[] m) throws GeneralSecurityException { Cipher decryptCipher = EngineFactory.CIPHER.getInstance(RAW_RSA_ALGORITHM); decryptCipher.init(Cipher.DECRYPT_MODE, this.privateKey); byte[] c = decryptCipher.doFinal(m); // To make sure the private key operation is correct, we check the result with public key // operation. Cipher encryptCipher = EngineFactory.CIPHER.getInstance(RAW_RSA_ALGORITHM); encryptCipher.init(Cipher.ENCRYPT_MODE, this.publicKey); byte[] m0 = encryptCipher.doFinal(c); if (!new BigInteger(1, m).equals(new BigInteger(1, m0))) { throw new java.lang.RuntimeException("Security bug: RSA signature computation error"); } return c; } // https://tools.ietf.org/html/rfc8017#section-9.1.1. private byte[] emsaPssEncode(byte[] m, int emBits) throws GeneralSecurityException { // Step 1. Length checking. // This step is unnecessary because Java's byte[] only supports up to 2^31 -1 bytes while the // input limitation for the hash function is far larger (2^61 - 1 for SHA-1). // Step 2. Compute hash. Validators.validateSignatureHash(sigHash); MessageDigest digest = EngineFactory.MESSAGE_DIGEST.getInstance(SubtleUtil.toDigestAlgo(this.sigHash)); byte[] mHash = digest.digest(m); // Step 3. Check emLen. int hLen = digest.getDigestLength(); int emLen = (emBits - 1) / 8 + 1; if (emLen < hLen + this.saltLength + 2) { throw new GeneralSecurityException("encoding error"); } // Step 4. Generate random salt. byte[] salt = Random.randBytes(this.saltLength); // Step 5. Compute M'. byte[] mPrime = new byte[8 + hLen + this.saltLength]; System.arraycopy(mHash, 0, mPrime, 8, hLen); System.arraycopy(salt, 0, mPrime, 8 + hLen, salt.length); // Step 6. Compute H. byte[] h = digest.digest(mPrime); // Step 7, 8. Generate DB. byte[] db = new byte[emLen - hLen - 1]; db[emLen - this.saltLength - hLen - 2] = (byte) 0x01; System.arraycopy(salt, 0, db, emLen - this.saltLength - hLen - 1, salt.length); // Step 9. Compute dbMask. byte[] dbMask = SubtleUtil.mgf1(h, emLen - hLen - 1, this.mgf1Hash); // Step 10. Compute maskedDb. byte[] maskedDb = new byte[emLen - hLen - 1]; for (int i = 0; i < maskedDb.length; i++) { maskedDb[i] = (byte) (db[i] ^ dbMask[i]); } // Step 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in maskedDB to zero. for (int i = 0; i < (long) emLen * 8 - emBits; i++) { int bytePos = i / 8; int bitPos = 7 - i % 8; maskedDb[bytePos] = (byte) (maskedDb[bytePos] & ~(1 << bitPos)); } // Step 12. Generate EM. byte[] em = new byte[maskedDb.length + hLen + 1]; System.arraycopy(maskedDb, 0, em, 0, maskedDb.length); System.arraycopy(h, 0, em, maskedDb.length, h.length); em[maskedDb.length + hLen] = (byte) 0xbc; return em; } }