// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////

package com.google.crypto.tink.subtle;

import static com.google.crypto.tink.subtle.Ed25519Constants.B2;
import static com.google.crypto.tink.subtle.Ed25519Constants.B_TABLE;
import static com.google.crypto.tink.subtle.Ed25519Constants.D;
import static com.google.crypto.tink.subtle.Ed25519Constants.D2;
import static com.google.crypto.tink.subtle.Ed25519Constants.SQRTM1;
import static com.google.crypto.tink.subtle.Field25519.FIELD_LEN;
import static com.google.crypto.tink.subtle.Field25519.LIMB_CNT;

import java.security.GeneralSecurityException;
import java.security.MessageDigest;
import java.util.Arrays;

This implementation is based on the ed25519/ref10 implementation in NaCl.

It implements this twisted Edwards curve:

-x^2 + y^2 = 1 + (-121665 / 121666 mod 2^255-19)*x^2*y^2
See Also:
/** * This implementation is based on the ed25519/ref10 implementation in NaCl. * * <p>It implements this twisted Edwards curve: * * <pre> * -x^2 + y^2 = 1 + (-121665 / 121666 mod 2^255-19)*x^2*y^2 * </pre> * * @see <a href="https://eprint.iacr.org/2008/013.pdf">Bernstein D.J., Birkner P., Joye M., Lange * T., Peters C. (2008) Twisted Edwards Curves</a> * @see <a href="https://eprint.iacr.org/2008/522.pdf">Hisil H., Wong K.KH., Carter G., Dawson E. * (2008) Twisted Edwards Curves Revisited</a> */
final class Ed25519 { public static final int SECRET_KEY_LEN = FIELD_LEN; public static final int PUBLIC_KEY_LEN = FIELD_LEN; public static final int SIGNATURE_LEN = FIELD_LEN * 2; // (x = 0, y = 1) point private static final CachedXYT CACHED_NEUTRAL = new CachedXYT( new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new long[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); private static final PartialXYZT NEUTRAL = new PartialXYZT( new XYZ(new long[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}), new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0});
Projective point representation (X:Y:Z) satisfying x = X/Z, y = Y/Z Note that this is referred as ge_p2 in ref10 impl. Also note that x = X, y = Y and z = Z below following Java coding style. See Koyama K., Tsuruoka Y. (1993) Speeding up Elliptic Cryptosystems by Using a Signed Binary Window Method. https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html
/** * Projective point representation (X:Y:Z) satisfying x = X/Z, y = Y/Z * * Note that this is referred as ge_p2 in ref10 impl. * Also note that x = X, y = Y and z = Z below following Java coding style. * * See * Koyama K., Tsuruoka Y. (1993) Speeding up Elliptic Cryptosystems by Using a Signed Binary * Window Method. * * https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html */
private static class XYZ { final long[] x; final long[] y; final long[] z; XYZ() { this(new long[LIMB_CNT], new long[LIMB_CNT], new long[LIMB_CNT]); } XYZ(long[] x, long[] y, long[] z) { this.x = x; this.y = y; this.z = z; } XYZ(XYZ xyz) { x = Arrays.copyOf(xyz.x, LIMB_CNT); y = Arrays.copyOf(xyz.y, LIMB_CNT); z = Arrays.copyOf(xyz.z, LIMB_CNT); } XYZ(PartialXYZT partialXYZT) { this(); fromPartialXYZT(this, partialXYZT); }
ge_p1p1_to_p2.c
/** * ge_p1p1_to_p2.c */
static XYZ fromPartialXYZT(XYZ out, PartialXYZT in) { Field25519.mult(out.x, in.xyz.x, in.t); Field25519.mult(out.y, in.xyz.y, in.xyz.z); Field25519.mult(out.z, in.xyz.z, in.t); return out; }
Encodes this point to bytes.
/** * Encodes this point to bytes. */
byte[] toBytes() { long[] recip = new long[LIMB_CNT]; long[] x = new long[LIMB_CNT]; long[] y = new long[LIMB_CNT]; Field25519.inverse(recip, z); Field25519.mult(x, this.x, recip); Field25519.mult(y, this.y, recip); byte[] s = Field25519.contract(y); s[31] = (byte) (s[31] ^ (getLsb(x) << 7)); return s; }
Checks that the point is on curve
/** Checks that the point is on curve */
boolean isOnCurve() { long[] x2 = new long[LIMB_CNT]; Field25519.square(x2, x); long[] y2 = new long[LIMB_CNT]; Field25519.square(y2, y); long[] z2 = new long[LIMB_CNT]; Field25519.square(z2, z); long[] z4 = new long[LIMB_CNT]; Field25519.square(z4, z2); long[] lhs = new long[LIMB_CNT]; // lhs = y^2 - x^2 Field25519.sub(lhs, y2, x2); // lhs = z^2 * (y2 - x2) Field25519.mult(lhs, lhs, z2); long[] rhs = new long[LIMB_CNT]; // rhs = x^2 * y^2 Field25519.mult(rhs, x2, y2); // rhs = D * x^2 * y^2 Field25519.mult(rhs, rhs, D); // rhs = z^4 + D * x^2 * y^2 Field25519.sum(rhs, z4); // Field25519.mult reduces its output, but Field25519.sum does not, so we have to manually // reduce it here. Field25519.reduce(rhs, rhs); // z^2 (y^2 - x^2) == z^4 + D * x^2 * y^2 return Bytes.equal(Field25519.contract(lhs), Field25519.contract(rhs)); } }
Represents extended projective point representation (X:Y:Z:T) satisfying x = X/Z, y = Y/Z, XY = ZT Note that this is referred as ge_p3 in ref10 impl. Also note that t = T below following Java coding style. See Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html
/** * Represents extended projective point representation (X:Y:Z:T) satisfying x = X/Z, y = Y/Z, * XY = ZT * * Note that this is referred as ge_p3 in ref10 impl. * Also note that t = T below following Java coding style. * * See * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. * * https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html */
private static class XYZT { final XYZ xyz; final long[] t; XYZT() { this(new XYZ(), new long[LIMB_CNT]); } XYZT(XYZ xyz, long[] t) { this.xyz = xyz; this.t = t; } XYZT(PartialXYZT partialXYZT) { this(); fromPartialXYZT(this, partialXYZT); }
ge_p1p1_to_p2.c
/** * ge_p1p1_to_p2.c */
private static XYZT fromPartialXYZT(XYZT out, PartialXYZT in) { Field25519.mult(out.xyz.x, in.xyz.x, in.t); Field25519.mult(out.xyz.y, in.xyz.y, in.xyz.z); Field25519.mult(out.xyz.z, in.xyz.z, in.t); Field25519.mult(out.t, in.xyz.x, in.xyz.y); return out; }
Decodes s into an extented projective point. See Section 5.1.3 Decoding in https://tools.ietf.org/html/rfc8032#section-5.1.3
/** * Decodes {@code s} into an extented projective point. * See Section 5.1.3 Decoding in https://tools.ietf.org/html/rfc8032#section-5.1.3 */
private static XYZT fromBytesNegateVarTime(byte[] s) throws GeneralSecurityException { long[] x = new long[LIMB_CNT]; long[] y = Field25519.expand(s); long[] z = new long[LIMB_CNT]; z[0] = 1; long[] t = new long[LIMB_CNT]; long[] u = new long[LIMB_CNT]; long[] v = new long[LIMB_CNT]; long[] vxx = new long[LIMB_CNT]; long[] check = new long[LIMB_CNT]; Field25519.square(u, y); Field25519.mult(v, u, D); Field25519.sub(u, u, z); // u = y^2 - 1 Field25519.sum(v, v, z); // v = dy^2 + 1 long[] v3 = new long[LIMB_CNT]; Field25519.square(v3, v); Field25519.mult(v3, v3, v); // v3 = v^3 Field25519.square(x, v3); Field25519.mult(x, x, v); Field25519.mult(x, x, u); // x = uv^7 pow2252m3(x, x); // x = (uv^7)^((q-5)/8) Field25519.mult(x, x, v3); Field25519.mult(x, x, u); // x = uv^3(uv^7)^((q-5)/8) Field25519.square(vxx, x); Field25519.mult(vxx, vxx, v); Field25519.sub(check, vxx, u); // vx^2-u if (isNonZeroVarTime(check)) { Field25519.sum(check, vxx, u); // vx^2+u if (isNonZeroVarTime(check)) { throw new GeneralSecurityException("Cannot convert given bytes to extended projective " + "coordinates. No square root exists for modulo 2^255-19"); } Field25519.mult(x, x, SQRTM1); } if (!isNonZeroVarTime(x) && (s[31] & 0xff) >> 7 != 0) { throw new GeneralSecurityException("Cannot convert given bytes to extended projective " + "coordinates. Computed x is zero and encoded x's least significant bit is not zero"); } if (getLsb(x) == ((s[31] & 0xff) >> 7)) { neg(x, x); } Field25519.mult(t, x, y); return new XYZT(new XYZ(x, y, z), t); } }
Partial projective point representation ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T Note that this is referred as complete form in the original ref10 impl (ge_p1p1). Also note that t = T below following Java coding style. Although this has the same types as XYZT, it is redefined to have its own type so that it is readable and 1:1 corresponds to ref10 impl. Can be converted to XYZT as follows: X1 = X * T = x * Z * T = x * Z1 Y1 = Y * Z = y * T * Z = y * Z1 Z1 = Z * T = Z * T T1 = X * Y = x * Z * y * T = x * y * Z1 = X1Y1 / Z1
/** * Partial projective point representation ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T * * Note that this is referred as complete form in the original ref10 impl (ge_p1p1). * Also note that t = T below following Java coding style. * * Although this has the same types as XYZT, it is redefined to have its own type so that it is * readable and 1:1 corresponds to ref10 impl. * * Can be converted to XYZT as follows: * X1 = X * T = x * Z * T = x * Z1 * Y1 = Y * Z = y * T * Z = y * Z1 * Z1 = Z * T = Z * T * T1 = X * Y = x * Z * y * T = x * y * Z1 = X1Y1 / Z1 */
private static class PartialXYZT { final XYZ xyz; final long[] t; PartialXYZT() { this(new XYZ(), new long[LIMB_CNT]); } PartialXYZT(XYZ xyz, long[] t) { this.xyz = xyz; this.t = t; } PartialXYZT(PartialXYZT other) { xyz = new XYZ(other.xyz); t = Arrays.copyOf(other.t, LIMB_CNT); } }
Corresponds to the caching mentioned in the last paragraph of Section 3.1 of Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. with Z = 1.
/** * Corresponds to the caching mentioned in the last paragraph of Section 3.1 of * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. * with Z = 1. */
static class CachedXYT { final long[] yPlusX; final long[] yMinusX; final long[] t2d; CachedXYT() { this(new long[LIMB_CNT], new long[LIMB_CNT], new long[LIMB_CNT]); }
Creates a cached XYZT with Z = 1
Params:
  • yPlusX – y + x
  • yMinusX – y - x
  • t2d – 2d * xy
/** * Creates a cached XYZT with Z = 1 * * @param yPlusX y + x * @param yMinusX y - x * @param t2d 2d * xy */
CachedXYT(long[] yPlusX, long[] yMinusX, long[] t2d) { this.yPlusX = yPlusX; this.yMinusX = yMinusX; this.t2d = t2d; } CachedXYT(CachedXYT other) { yPlusX = Arrays.copyOf(other.yPlusX, LIMB_CNT); yMinusX = Arrays.copyOf(other.yMinusX, LIMB_CNT); t2d = Arrays.copyOf(other.t2d, LIMB_CNT); } // z is one implicitly, so this just copies {@code in} to {@code output}. void multByZ(long[] output, long[] in) { System.arraycopy(in, 0, output, 0, LIMB_CNT); }
If icopy is 1, copies other into this point. Time invariant wrt to icopy value.
/** * If icopy is 1, copies {@code other} into this point. Time invariant wrt to icopy value. */
void copyConditional(CachedXYT other, int icopy) { Curve25519.copyConditional(yPlusX, other.yPlusX, icopy); Curve25519.copyConditional(yMinusX, other.yMinusX, icopy); Curve25519.copyConditional(t2d, other.t2d, icopy); } } private static class CachedXYZT extends CachedXYT { private final long[] z; CachedXYZT() { this(new long[LIMB_CNT], new long[LIMB_CNT], new long[LIMB_CNT], new long[LIMB_CNT]); }
ge_p3_to_cached.c
/** * ge_p3_to_cached.c */
CachedXYZT(XYZT xyzt) { this(); Field25519.sum(yPlusX, xyzt.xyz.y, xyzt.xyz.x); Field25519.sub(yMinusX, xyzt.xyz.y, xyzt.xyz.x); System.arraycopy(xyzt.xyz.z, 0, z, 0, LIMB_CNT); Field25519.mult(t2d, xyzt.t, D2); }
Creates a cached XYZT
Params:
  • yPlusX – Y + X
  • yMinusX – Y - X
  • z – Z
  • t2d – 2d * (XY/Z)
/** * Creates a cached XYZT * * @param yPlusX Y + X * @param yMinusX Y - X * @param z Z * @param t2d 2d * (XY/Z) */
CachedXYZT(long[] yPlusX, long[] yMinusX, long[] z, long[] t2d) { super(yPlusX, yMinusX, t2d); this.z = z; } @Override public void multByZ(long[] output, long[] in) { Field25519.mult(output, in, z); } }
Addition defined in Section 3.1 of Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. Please note that this is a partial of the operation listed there leaving out the final conversion from PartialXYZT to XYZT.
Params:
  • extended – extended projective point input
  • cached – cached projective point input
/** * Addition defined in Section 3.1 of * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. * * Please note that this is a partial of the operation listed there leaving out the final * conversion from PartialXYZT to XYZT. * * @param extended extended projective point input * @param cached cached projective point input */
private static void add(PartialXYZT partialXYZT, XYZT extended, CachedXYT cached) { long[] t = new long[LIMB_CNT]; // Y1 + X1 Field25519.sum(partialXYZT.xyz.x, extended.xyz.y, extended.xyz.x); // Y1 - X1 Field25519.sub(partialXYZT.xyz.y, extended.xyz.y, extended.xyz.x); // A = (Y1 - X1) * (Y2 - X2) Field25519.mult(partialXYZT.xyz.y, partialXYZT.xyz.y, cached.yMinusX); // B = (Y1 + X1) * (Y2 + X2) Field25519.mult(partialXYZT.xyz.z, partialXYZT.xyz.x, cached.yPlusX); // C = T1 * 2d * T2 = 2d * T1 * T2 (2d is written as k in the paper) Field25519.mult(partialXYZT.t, extended.t, cached.t2d); // Z1 * Z2 cached.multByZ(partialXYZT.xyz.x, extended.xyz.z); // D = 2 * Z1 * Z2 Field25519.sum(t, partialXYZT.xyz.x, partialXYZT.xyz.x); // X3 = B - A Field25519.sub(partialXYZT.xyz.x, partialXYZT.xyz.z, partialXYZT.xyz.y); // Y3 = B + A Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.y); // Z3 = D + C Field25519.sum(partialXYZT.xyz.z, t, partialXYZT.t); // T3 = D - C Field25519.sub(partialXYZT.t, t, partialXYZT.t); }
Based on the addition defined in Section 3.1 of Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. Please note that this is a partial of the operation listed there leaving out the final conversion from PartialXYZT to XYZT.
Params:
  • extended – extended projective point input
  • cached – cached projective point input
/** * Based on the addition defined in Section 3.1 of * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. * * Please note that this is a partial of the operation listed there leaving out the final * conversion from PartialXYZT to XYZT. * * @param extended extended projective point input * @param cached cached projective point input */
private static void sub(PartialXYZT partialXYZT, XYZT extended, CachedXYT cached) { long[] t = new long[LIMB_CNT]; // Y1 + X1 Field25519.sum(partialXYZT.xyz.x, extended.xyz.y, extended.xyz.x); // Y1 - X1 Field25519.sub(partialXYZT.xyz.y, extended.xyz.y, extended.xyz.x); // A = (Y1 - X1) * (Y2 + X2) Field25519.mult(partialXYZT.xyz.y, partialXYZT.xyz.y, cached.yPlusX); // B = (Y1 + X1) * (Y2 - X2) Field25519.mult(partialXYZT.xyz.z, partialXYZT.xyz.x, cached.yMinusX); // C = T1 * 2d * T2 = 2d * T1 * T2 (2d is written as k in the paper) Field25519.mult(partialXYZT.t, extended.t, cached.t2d); // Z1 * Z2 cached.multByZ(partialXYZT.xyz.x, extended.xyz.z); // D = 2 * Z1 * Z2 Field25519.sum(t, partialXYZT.xyz.x, partialXYZT.xyz.x); // X3 = B - A Field25519.sub(partialXYZT.xyz.x, partialXYZT.xyz.z, partialXYZT.xyz.y); // Y3 = B + A Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.y); // Z3 = D - C Field25519.sub(partialXYZT.xyz.z, t, partialXYZT.t); // T3 = D + C Field25519.sum(partialXYZT.t, t, partialXYZT.t); }
Doubles p and puts the result into this PartialXYZT. This is based on the addition defined in formula 7 in Section 3.3 of Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. Please note that this is a partial of the operation listed there leaving out the final conversion from PartialXYZT to XYZT and also this fixes a typo in calculation of Y3 and T3 in the paper, H should be replaced with A+B.
/** * Doubles {@code p} and puts the result into this PartialXYZT. * * This is based on the addition defined in formula 7 in Section 3.3 of * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. * * Please note that this is a partial of the operation listed there leaving out the final * conversion from PartialXYZT to XYZT and also this fixes a typo in calculation of Y3 and T3 in * the paper, H should be replaced with A+B. */
private static void doubleXYZ(PartialXYZT partialXYZT, XYZ p) { long[] t0 = new long[LIMB_CNT]; // XX = X1^2 Field25519.square(partialXYZT.xyz.x, p.x); // YY = Y1^2 Field25519.square(partialXYZT.xyz.z, p.y); // B' = Z1^2 Field25519.square(partialXYZT.t, p.z); // B = 2 * B' Field25519.sum(partialXYZT.t, partialXYZT.t, partialXYZT.t); // A = X1 + Y1 Field25519.sum(partialXYZT.xyz.y, p.x, p.y); // AA = A^2 Field25519.square(t0, partialXYZT.xyz.y); // Y3 = YY + XX Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.x); // Z3 = YY - XX Field25519.sub(partialXYZT.xyz.z, partialXYZT.xyz.z, partialXYZT.xyz.x); // X3 = AA - Y3 Field25519.sub(partialXYZT.xyz.x, t0, partialXYZT.xyz.y); // T3 = B - Z3 Field25519.sub(partialXYZT.t, partialXYZT.t, partialXYZT.xyz.z); }
Doubles p and puts the result into this PartialXYZT.
/** * Doubles {@code p} and puts the result into this PartialXYZT. */
private static void doubleXYZT(PartialXYZT partialXYZT, XYZT p) { doubleXYZ(partialXYZT, p.xyz); }
Compares two byte values in constant time. Please note that this doesn't reuse Curve25519.eq method since the below inputs are byte values.
/** * Compares two byte values in constant time. * * Please note that this doesn't reuse {@link Curve25519#eq} method since the below inputs are * byte values. */
private static int eq(int a, int b) { int r = ~(a ^ b) & 0xff; r &= r << 4; r &= r << 2; r &= r << 1; return (r >> 7) & 1; }
This is a constant time operation where point b*B*256^pos is stored in t. When b is 0, t remains the same (i.e., neutral point). Although B_TABLE[32][8] (B_TABLE[i][j] = (j+1)*B*256^i) has j values in [0, 7], the select method negates the corresponding point if b is negative (which is straight forward in elliptic curves by just negating y coordinate). Therefore we can get multiples of B with the half of memory requirements.
Params:
  • t – neutral element (i.e., point 0), also serves as output.
  • pos – in B[pos][j] = (j+1)*B*256^pos
  • b – value in [-8, 8] range.
/** * This is a constant time operation where point b*B*256^pos is stored in {@code t}. * When b is 0, t remains the same (i.e., neutral point). * * Although B_TABLE[32][8] (B_TABLE[i][j] = (j+1)*B*256^i) has j values in [0, 7], the select * method negates the corresponding point if b is negative (which is straight forward in elliptic * curves by just negating y coordinate). Therefore we can get multiples of B with the half of * memory requirements. * * @param t neutral element (i.e., point 0), also serves as output. * @param pos in B[pos][j] = (j+1)*B*256^pos * @param b value in [-8, 8] range. */
private static void select(CachedXYT t, int pos, byte b) { int bnegative = (b & 0xff) >> 7; int babs = b - (((-bnegative) & b) << 1); t.copyConditional(B_TABLE[pos][0], eq(babs, 1)); t.copyConditional(B_TABLE[pos][1], eq(babs, 2)); t.copyConditional(B_TABLE[pos][2], eq(babs, 3)); t.copyConditional(B_TABLE[pos][3], eq(babs, 4)); t.copyConditional(B_TABLE[pos][4], eq(babs, 5)); t.copyConditional(B_TABLE[pos][5], eq(babs, 6)); t.copyConditional(B_TABLE[pos][6], eq(babs, 7)); t.copyConditional(B_TABLE[pos][7], eq(babs, 8)); long[] yPlusX = Arrays.copyOf(t.yMinusX, LIMB_CNT); long[] yMinusX = Arrays.copyOf(t.yPlusX, LIMB_CNT); long[] t2d = Arrays.copyOf(t.t2d, LIMB_CNT); neg(t2d, t2d); CachedXYT minust = new CachedXYT(yPlusX, yMinusX, t2d); t.copyConditional(minust, bnegative); }
Computes a*B where a = a[0]+256*a[1]+...+256^31 a[31] and B is the Ed25519 base point (x,4/5) with x positive. Preconditions: a[31] <= 127
Throws:
/** * Computes {@code a}*B * where a = a[0]+256*a[1]+...+256^31 a[31] and * B is the Ed25519 base point (x,4/5) with x positive. * * Preconditions: * a[31] <= 127 * @throws IllegalStateException iff there is arithmetic error. */
@SuppressWarnings("NarrowingCompoundAssignment") private static XYZ scalarMultWithBase(byte[] a) { byte[] e = new byte[2 * FIELD_LEN]; for (int i = 0; i < FIELD_LEN; i++) { e[2 * i + 0] = (byte) (((a[i] & 0xff) >> 0) & 0xf); e[2 * i + 1] = (byte) (((a[i] & 0xff) >> 4) & 0xf); } // each e[i] is between 0 and 15 // e[63] is between 0 and 7 // Rewrite e in a way that each e[i] is in [-8, 8]. // This can be done since a[63] is in [0, 7], the carry-over onto the most significant byte // a[63] can be at most 1. int carry = 0; for (int i = 0; i < e.length - 1; i++) { e[i] += carry; carry = e[i] + 8; carry >>= 4; e[i] -= carry << 4; } e[e.length - 1] += carry; PartialXYZT ret = new PartialXYZT(NEUTRAL); XYZT xyzt = new XYZT(); // Although B_TABLE's i can be at most 31 (stores only 32 4bit multiples of B) and we have 64 // 4bit values in e array, the below for loop adds cached values by iterating e by two in odd // indices. After the result, we can double the result point 4 times to shift the multiplication // scalar by 4 bits. for (int i = 1; i < e.length; i += 2) { CachedXYT t = new CachedXYT(CACHED_NEUTRAL); select(t, i / 2, e[i]); add(ret, XYZT.fromPartialXYZT(xyzt, ret), t); } // Doubles the result 4 times to shift the multiplication scalar 4 bits to get the actual result // for the odd indices in e. XYZ xyz = new XYZ(); doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); // Add multiples of B for even indices of e. for (int i = 0; i < e.length; i += 2) { CachedXYT t = new CachedXYT(CACHED_NEUTRAL); select(t, i / 2, e[i]); add(ret, XYZT.fromPartialXYZT(xyzt, ret), t); } // This check is to protect against flaws, i.e. if there is a computation error through a // faulty CPU or if the implementation contains a bug. XYZ result = new XYZ(ret); if (!result.isOnCurve()) { throw new IllegalStateException("arithmetic error in scalar multiplication"); } return result; }
Computes a*B where a = a[0]+256*a[1]+...+256^31 a[31] and B is the Ed25519 base point (x,4/5) with x positive. Preconditions: a[31] <= 127
/** * Computes {@code a}*B * where a = a[0]+256*a[1]+...+256^31 a[31] and * B is the Ed25519 base point (x,4/5) with x positive. * * Preconditions: * a[31] <= 127 */
static byte[] scalarMultWithBaseToBytes(byte[] a) { return scalarMultWithBase(a).toBytes(); } @SuppressWarnings("NarrowingCompoundAssignment") private static byte[] slide(byte[] a) { byte[] r = new byte[256]; // Writes each bit in a[0..31] into r[0..255]: // a = a[0]+256*a[1]+...+256^31*a[31] is equal to // r = r[0]+2*r[1]+...+2^255*r[255] for (int i = 0; i < 256; i++) { r[i] = (byte) (1 & ((a[i >> 3] & 0xff) >> (i & 7))); } // Transforms r[i] as odd values in [-15, 15] for (int i = 0; i < 256; i++) { if (r[i] != 0) { for (int b = 1; b <= 6 && i + b < 256; b++) { if (r[i + b] != 0) { if (r[i] + (r[i + b] << b) <= 15) { r[i] += r[i + b] << b; r[i + b] = 0; } else if (r[i] - (r[i + b] << b) >= -15) { r[i] -= r[i + b] << b; for (int k = i + b; k < 256; k++) { if (r[k] == 0) { r[k] = 1; break; } r[k] = 0; } } else { break; } } } } } return r; }
Computes apointA+b*B where a = a[0]+256*a[1]+...+256^31*a[31]. and b = b[0]+256*b[1]+...+256^31*b[31]. B is the Ed25519 base point (x,4/5) with x positive. Note that execution time varies based on the input since this will only be used in verification of signatures.
/** * Computes {@code a}*{@code pointA}+{@code b}*B * where a = a[0]+256*a[1]+...+256^31*a[31]. * and b = b[0]+256*b[1]+...+256^31*b[31]. * B is the Ed25519 base point (x,4/5) with x positive. * * Note that execution time varies based on the input since this will only be used in verification * of signatures. */
private static XYZ doubleScalarMultVarTime(byte[] a, XYZT pointA, byte[] b) { // pointA, 3*pointA, 5*pointA, 7*pointA, 9*pointA, 11*pointA, 13*pointA, 15*pointA CachedXYZT[] pointAArray = new CachedXYZT[8]; pointAArray[0] = new CachedXYZT(pointA); PartialXYZT t = new PartialXYZT(); doubleXYZT(t, pointA); XYZT doubleA = new XYZT(t); for (int i = 1; i < pointAArray.length; i++) { add(t, doubleA, pointAArray[i - 1]); pointAArray[i] = new CachedXYZT(new XYZT(t)); } byte[] aSlide = slide(a); byte[] bSlide = slide(b); t = new PartialXYZT(NEUTRAL); XYZT u = new XYZT(); int i = 255; for (; i >= 0; i--) { if (aSlide[i] != 0 || bSlide[i] != 0) { break; } } for (; i >= 0; i--) { doubleXYZ(t, new XYZ(t)); if (aSlide[i] > 0) { add(t, XYZT.fromPartialXYZT(u, t), pointAArray[aSlide[i] / 2]); } else if (aSlide[i] < 0) { sub(t, XYZT.fromPartialXYZT(u, t), pointAArray[-aSlide[i] / 2]); } if (bSlide[i] > 0) { add(t, XYZT.fromPartialXYZT(u, t), B2[bSlide[i] / 2]); } else if (bSlide[i] < 0) { sub(t, XYZT.fromPartialXYZT(u, t), B2[-bSlide[i] / 2]); } } return new XYZ(t); }
Returns true if in is nonzero. Note that execution time might depend on the input in.
/** * Returns true if {@code in} is nonzero. * * Note that execution time might depend on the input {@code in}. */
private static boolean isNonZeroVarTime(long[] in) { long[] inCopy = new long[in.length + 1]; System.arraycopy(in, 0, inCopy, 0, in.length); Field25519.reduceCoefficients(inCopy); byte[] bytes = Field25519.contract(inCopy); for (byte b : bytes) { if (b != 0) { return true; } } return false; }
Returns the least significant bit of in.
/** * Returns the least significant bit of {@code in}. */
private static int getLsb(long[] in) { return Field25519.contract(in)[0] & 1; }
Negates all values in in and store it in out.
/** * Negates all values in {@code in} and store it in {@code out}. */
private static void neg(long[] out, long[] in) { for (int i = 0; i < in.length; i++) { out[i] = -in[i]; } }
Computes in^(2^252-3) mod 2^255-19 and puts the result in out.
/** * Computes {@code in}^(2^252-3) mod 2^255-19 and puts the result in {@code out}. */
private static void pow2252m3(long[] out, long[] in) { long[] t0 = new long[LIMB_CNT]; long[] t1 = new long[LIMB_CNT]; long[] t2 = new long[LIMB_CNT]; // z2 = z1^2^1 Field25519.square(t0, in); // z8 = z2^2^2 Field25519.square(t1, t0); for (int i = 1; i < 2; i++) { Field25519.square(t1, t1); } // z9 = z1*z8 Field25519.mult(t1, in, t1); // z11 = z2*z9 Field25519.mult(t0, t0, t1); // z22 = z11^2^1 Field25519.square(t0, t0); // z_5_0 = z9*z22 Field25519.mult(t0, t1, t0); // z_10_5 = z_5_0^2^5 Field25519.square(t1, t0); for (int i = 1; i < 5; i++) { Field25519.square(t1, t1); } // z_10_0 = z_10_5*z_5_0 Field25519.mult(t0, t1, t0); // z_20_10 = z_10_0^2^10 Field25519.square(t1, t0); for (int i = 1; i < 10; i++) { Field25519.square(t1, t1); } // z_20_0 = z_20_10*z_10_0 Field25519.mult(t1, t1, t0); // z_40_20 = z_20_0^2^20 Field25519.square(t2, t1); for (int i = 1; i < 20; i++) { Field25519.square(t2, t2); } // z_40_0 = z_40_20*z_20_0 Field25519.mult(t1, t2, t1); // z_50_10 = z_40_0^2^10 Field25519.square(t1, t1); for (int i = 1; i < 10; i++) { Field25519.square(t1, t1); } // z_50_0 = z_50_10*z_10_0 Field25519.mult(t0, t1, t0); // z_100_50 = z_50_0^2^50 Field25519.square(t1, t0); for (int i = 1; i < 50; i++) { Field25519.square(t1, t1); } // z_100_0 = z_100_50*z_50_0 Field25519.mult(t1, t1, t0); // z_200_100 = z_100_0^2^100 Field25519.square(t2, t1); for (int i = 1; i < 100; i++) { Field25519.square(t2, t2); } // z_200_0 = z_200_100*z_100_0 Field25519.mult(t1, t2, t1); // z_250_50 = z_200_0^2^50 Field25519.square(t1, t1); for (int i = 1; i < 50; i++) { Field25519.square(t1, t1); } // z_250_0 = z_250_50*z_50_0 Field25519.mult(t0, t1, t0); // z_252_2 = z_250_0^2^2 Field25519.square(t0, t0); for (int i = 1; i < 2; i++) { Field25519.square(t0, t0); } // z_252_3 = z_252_2*z1 Field25519.mult(out, t0, in); }
Returns 3 bytes of in starting from idx in Little-Endian format.
/** * Returns 3 bytes of {@code in} starting from {@code idx} in Little-Endian format. */
private static long load3(byte[] in, int idx) { long result; result = (long) in[idx] & 0xff; result |= (long) (in[idx + 1] & 0xff) << 8; result |= (long) (in[idx + 2] & 0xff) << 16; return result; }
Returns 4 bytes of in starting from idx in Little-Endian format.
/** * Returns 4 bytes of {@code in} starting from {@code idx} in Little-Endian format. */
private static long load4(byte[] in, int idx) { long result = load3(in, idx); result |= (long) (in[idx + 3] & 0xff) << 24; return result; }
Input: s[0]+256*s[1]+...+256^63*s[63] = s Output: s[0]+256*s[1]+...+256^31*s[31] = s mod l where l = 2^252 + 27742317777372353535851937790883648493. Overwrites s in place.
/** * Input: * s[0]+256*s[1]+...+256^63*s[63] = s * * Output: * s[0]+256*s[1]+...+256^31*s[31] = s mod l * where l = 2^252 + 27742317777372353535851937790883648493. * Overwrites s in place. */
private static void reduce(byte[] s) { // Observation: // 2^252 mod l is equivalent to -27742317777372353535851937790883648493 mod l // Let m = -27742317777372353535851937790883648493 // Thus a*2^252+b mod l is equivalent to a*m+b mod l // // First s is divided into chunks of 21 bits as follows: // s0+2^21*s1+2^42*s3+...+2^462*s23 = s[0]+256*s[1]+...+256^63*s[63] long s0 = 2097151 & load3(s, 0); long s1 = 2097151 & (load4(s, 2) >> 5); long s2 = 2097151 & (load3(s, 5) >> 2); long s3 = 2097151 & (load4(s, 7) >> 7); long s4 = 2097151 & (load4(s, 10) >> 4); long s5 = 2097151 & (load3(s, 13) >> 1); long s6 = 2097151 & (load4(s, 15) >> 6); long s7 = 2097151 & (load3(s, 18) >> 3); long s8 = 2097151 & load3(s, 21); long s9 = 2097151 & (load4(s, 23) >> 5); long s10 = 2097151 & (load3(s, 26) >> 2); long s11 = 2097151 & (load4(s, 28) >> 7); long s12 = 2097151 & (load4(s, 31) >> 4); long s13 = 2097151 & (load3(s, 34) >> 1); long s14 = 2097151 & (load4(s, 36) >> 6); long s15 = 2097151 & (load3(s, 39) >> 3); long s16 = 2097151 & load3(s, 42); long s17 = 2097151 & (load4(s, 44) >> 5); long s18 = 2097151 & (load3(s, 47) >> 2); long s19 = 2097151 & (load4(s, 49) >> 7); long s20 = 2097151 & (load4(s, 52) >> 4); long s21 = 2097151 & (load3(s, 55) >> 1); long s22 = 2097151 & (load4(s, 57) >> 6); long s23 = (load4(s, 60) >> 3); long carry0; long carry1; long carry2; long carry3; long carry4; long carry5; long carry6; long carry7; long carry8; long carry9; long carry10; long carry11; long carry12; long carry13; long carry14; long carry15; long carry16; // s23*2^462 = s23*2^210*2^252 is equivalent to s23*2^210*m in mod l // As m is a 125 bit number, the result needs to scattered to 6 limbs (125/21 ceil is 6) // starting from s11 (s11*2^210) // m = [666643, 470296, 654183, -997805, 136657, -683901] in 21-bit limbs s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; // s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; // s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; // s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; // s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; // s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; // s18 = 0; // Reduce the bit length of limbs from s6 to s15 to 21-bits. carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 << 21; // Resume reduction where we left off. s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; // s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; // s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; // s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; // s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; // s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; // Reduce the range of limbs from s0 to s11 to 21-bits. carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; // Carry chain reduction to propagate excess bits from s0 to s5 to the most significant limbs. carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 << 21; // Do one last reduction as s12 might be 1. s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; // s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; // Serialize the result into the s. s[0] = (byte) s0; s[1] = (byte) (s0 >> 8); s[2] = (byte) ((s0 >> 16) | (s1 << 5)); s[3] = (byte) (s1 >> 3); s[4] = (byte) (s1 >> 11); s[5] = (byte) ((s1 >> 19) | (s2 << 2)); s[6] = (byte) (s2 >> 6); s[7] = (byte) ((s2 >> 14) | (s3 << 7)); s[8] = (byte) (s3 >> 1); s[9] = (byte) (s3 >> 9); s[10] = (byte) ((s3 >> 17) | (s4 << 4)); s[11] = (byte) (s4 >> 4); s[12] = (byte) (s4 >> 12); s[13] = (byte) ((s4 >> 20) | (s5 << 1)); s[14] = (byte) (s5 >> 7); s[15] = (byte) ((s5 >> 15) | (s6 << 6)); s[16] = (byte) (s6 >> 2); s[17] = (byte) (s6 >> 10); s[18] = (byte) ((s6 >> 18) | (s7 << 3)); s[19] = (byte) (s7 >> 5); s[20] = (byte) (s7 >> 13); s[21] = (byte) s8; s[22] = (byte) (s8 >> 8); s[23] = (byte) ((s8 >> 16) | (s9 << 5)); s[24] = (byte) (s9 >> 3); s[25] = (byte) (s9 >> 11); s[26] = (byte) ((s9 >> 19) | (s10 << 2)); s[27] = (byte) (s10 >> 6); s[28] = (byte) ((s10 >> 14) | (s11 << 7)); s[29] = (byte) (s11 >> 1); s[30] = (byte) (s11 >> 9); s[31] = (byte) (s11 >> 17); }
Input: a[0]+256*a[1]+...+256^31*a[31] = a b[0]+256*b[1]+...+256^31*b[31] = b c[0]+256*c[1]+...+256^31*c[31] = c Output: s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l where l = 2^252 + 27742317777372353535851937790883648493.
/** * Input: * a[0]+256*a[1]+...+256^31*a[31] = a * b[0]+256*b[1]+...+256^31*b[31] = b * c[0]+256*c[1]+...+256^31*c[31] = c * * Output: * s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l * where l = 2^252 + 27742317777372353535851937790883648493. */
private static void mulAdd(byte[] s, byte[] a, byte[] b, byte[] c) { // This is very similar to Ed25519.reduce, the difference in here is that it computes ab+c // See Ed25519.reduce for related comments. long a0 = 2097151 & load3(a, 0); long a1 = 2097151 & (load4(a, 2) >> 5); long a2 = 2097151 & (load3(a, 5) >> 2); long a3 = 2097151 & (load4(a, 7) >> 7); long a4 = 2097151 & (load4(a, 10) >> 4); long a5 = 2097151 & (load3(a, 13) >> 1); long a6 = 2097151 & (load4(a, 15) >> 6); long a7 = 2097151 & (load3(a, 18) >> 3); long a8 = 2097151 & load3(a, 21); long a9 = 2097151 & (load4(a, 23) >> 5); long a10 = 2097151 & (load3(a, 26) >> 2); long a11 = (load4(a, 28) >> 7); long b0 = 2097151 & load3(b, 0); long b1 = 2097151 & (load4(b, 2) >> 5); long b2 = 2097151 & (load3(b, 5) >> 2); long b3 = 2097151 & (load4(b, 7) >> 7); long b4 = 2097151 & (load4(b, 10) >> 4); long b5 = 2097151 & (load3(b, 13) >> 1); long b6 = 2097151 & (load4(b, 15) >> 6); long b7 = 2097151 & (load3(b, 18) >> 3); long b8 = 2097151 & load3(b, 21); long b9 = 2097151 & (load4(b, 23) >> 5); long b10 = 2097151 & (load3(b, 26) >> 2); long b11 = (load4(b, 28) >> 7); long c0 = 2097151 & load3(c, 0); long c1 = 2097151 & (load4(c, 2) >> 5); long c2 = 2097151 & (load3(c, 5) >> 2); long c3 = 2097151 & (load4(c, 7) >> 7); long c4 = 2097151 & (load4(c, 10) >> 4); long c5 = 2097151 & (load3(c, 13) >> 1); long c6 = 2097151 & (load4(c, 15) >> 6); long c7 = 2097151 & (load3(c, 18) >> 3); long c8 = 2097151 & load3(c, 21); long c9 = 2097151 & (load4(c, 23) >> 5); long c10 = 2097151 & (load3(c, 26) >> 2); long c11 = (load4(c, 28) >> 7); long s0; long s1; long s2; long s3; long s4; long s5; long s6; long s7; long s8; long s9; long s10; long s11; long s12; long s13; long s14; long s15; long s16; long s17; long s18; long s19; long s20; long s21; long s22; long s23; long carry0; long carry1; long carry2; long carry3; long carry4; long carry5; long carry6; long carry7; long carry8; long carry9; long carry10; long carry11; long carry12; long carry13; long carry14; long carry15; long carry16; long carry17; long carry18; long carry19; long carry20; long carry21; long carry22; s0 = c0 + a0 * b0; s1 = c1 + a0 * b1 + a1 * b0; s2 = c2 + a0 * b2 + a1 * b1 + a2 * b0; s3 = c3 + a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0; s4 = c4 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0; s5 = c5 + a0 * b5 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 + a5 * b0; s6 = c6 + a0 * b6 + a1 * b5 + a2 * b4 + a3 * b3 + a4 * b2 + a5 * b1 + a6 * b0; s7 = c7 + a0 * b7 + a1 * b6 + a2 * b5 + a3 * b4 + a4 * b3 + a5 * b2 + a6 * b1 + a7 * b0; s8 = c8 + a0 * b8 + a1 * b7 + a2 * b6 + a3 * b5 + a4 * b4 + a5 * b3 + a6 * b2 + a7 * b1 + a8 * b0; s9 = c9 + a0 * b9 + a1 * b8 + a2 * b7 + a3 * b6 + a4 * b5 + a5 * b4 + a6 * b3 + a7 * b2 + a8 * b1 + a9 * b0; s10 = c10 + a0 * b10 + a1 * b9 + a2 * b8 + a3 * b7 + a4 * b6 + a5 * b5 + a6 * b4 + a7 * b3 + a8 * b2 + a9 * b1 + a10 * b0; s11 = c11 + a0 * b11 + a1 * b10 + a2 * b9 + a3 * b8 + a4 * b7 + a5 * b6 + a6 * b5 + a7 * b4 + a8 * b3 + a9 * b2 + a10 * b1 + a11 * b0; s12 = a1 * b11 + a2 * b10 + a3 * b9 + a4 * b8 + a5 * b7 + a6 * b6 + a7 * b5 + a8 * b4 + a9 * b3 + a10 * b2 + a11 * b1; s13 = a2 * b11 + a3 * b10 + a4 * b9 + a5 * b8 + a6 * b7 + a7 * b6 + a8 * b5 + a9 * b4 + a10 * b3 + a11 * b2; s14 = a3 * b11 + a4 * b10 + a5 * b9 + a6 * b8 + a7 * b7 + a8 * b6 + a9 * b5 + a10 * b4 + a11 * b3; s15 = a4 * b11 + a5 * b10 + a6 * b9 + a7 * b8 + a8 * b7 + a9 * b6 + a10 * b5 + a11 * b4; s16 = a5 * b11 + a6 * b10 + a7 * b9 + a8 * b8 + a9 * b7 + a10 * b6 + a11 * b5; s17 = a6 * b11 + a7 * b10 + a8 * b9 + a9 * b8 + a10 * b7 + a11 * b6; s18 = a7 * b11 + a8 * b10 + a9 * b9 + a10 * b8 + a11 * b7; s19 = a8 * b11 + a9 * b10 + a10 * b9 + a11 * b8; s20 = a9 * b11 + a10 * b10 + a11 * b9; s21 = a10 * b11 + a11 * b10; s22 = a11 * b11; s23 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry18 = (s18 + (1 << 20)) >> 21; s19 += carry18; s18 -= carry18 << 21; carry20 = (s20 + (1 << 20)) >> 21; s21 += carry20; s20 -= carry20 << 21; carry22 = (s22 + (1 << 20)) >> 21; s23 += carry22; s22 -= carry22 << 21; carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 << 21; carry17 = (s17 + (1 << 20)) >> 21; s18 += carry17; s17 -= carry17 << 21; carry19 = (s19 + (1 << 20)) >> 21; s20 += carry19; s19 -= carry19 << 21; carry21 = (s21 + (1 << 20)) >> 21; s22 += carry21; s21 -= carry21 << 21; s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; // s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; // s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; // s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; // s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; // s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; // s18 = 0; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 << 21; s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; // s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; // s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; // s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; // s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; // s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; // s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; s[0] = (byte) s0; s[1] = (byte) (s0 >> 8); s[2] = (byte) ((s0 >> 16) | (s1 << 5)); s[3] = (byte) (s1 >> 3); s[4] = (byte) (s1 >> 11); s[5] = (byte) ((s1 >> 19) | (s2 << 2)); s[6] = (byte) (s2 >> 6); s[7] = (byte) ((s2 >> 14) | (s3 << 7)); s[8] = (byte) (s3 >> 1); s[9] = (byte) (s3 >> 9); s[10] = (byte) ((s3 >> 17) | (s4 << 4)); s[11] = (byte) (s4 >> 4); s[12] = (byte) (s4 >> 12); s[13] = (byte) ((s4 >> 20) | (s5 << 1)); s[14] = (byte) (s5 >> 7); s[15] = (byte) ((s5 >> 15) | (s6 << 6)); s[16] = (byte) (s6 >> 2); s[17] = (byte) (s6 >> 10); s[18] = (byte) ((s6 >> 18) | (s7 << 3)); s[19] = (byte) (s7 >> 5); s[20] = (byte) (s7 >> 13); s[21] = (byte) s8; s[22] = (byte) (s8 >> 8); s[23] = (byte) ((s8 >> 16) | (s9 << 5)); s[24] = (byte) (s9 >> 3); s[25] = (byte) (s9 >> 11); s[26] = (byte) ((s9 >> 19) | (s10 << 2)); s[27] = (byte) (s10 >> 6); s[28] = (byte) ((s10 >> 14) | (s11 << 7)); s[29] = (byte) (s11 >> 1); s[30] = (byte) (s11 >> 9); s[31] = (byte) (s11 >> 17); } static byte[] getHashedScalar(final byte[] privateKey) throws GeneralSecurityException { MessageDigest digest = EngineFactory.MESSAGE_DIGEST.getInstance("SHA-512"); digest.update(privateKey, 0, FIELD_LEN); byte[] h = digest.digest(); // https://tools.ietf.org/html/rfc8032#section-5.1.2. // Clear the lowest three bits of the first octet. h[0] = (byte) (h[0] & 248); // Clear the highest bit of the last octet. h[31] = (byte) (h[31] & 127); // Set the second highest bit if the last octet. h[31] = (byte) (h[31] | 64); return h; }
Returns the EdDSA signature for the message based on the hashedPrivateKey.
Params:
  • message – to sign
  • publicKey – scalarMultToBytes(byte[]) of hashedPrivateKey
  • hashedPrivateKey – getHashedScalar(byte[]) of the private key
Throws:
Returns:signature for the message.
/** * Returns the EdDSA signature for the {@code message} based on the {@code hashedPrivateKey}. * * @param message to sign * @param publicKey {@link Ed25519#scalarMultToBytes(byte[])} of {@code hashedPrivateKey} * @param hashedPrivateKey {@link Ed25519#getHashedScalar(byte[])} of the private key * @return signature for the {@code message}. * @throws GeneralSecurityException if there is no SHA-512 algorithm defined in * {@link EngineFactory}.MESSAGE_DIGEST. */
static byte[] sign(final byte[] message, final byte[] publicKey, final byte[] hashedPrivateKey) throws GeneralSecurityException { // Copying the message to make it thread-safe. Otherwise, if the caller modifies the message // between the first and the second hash then it might leak the private key. byte[] messageCopy = Arrays.copyOfRange(message, 0, message.length); MessageDigest digest = EngineFactory.MESSAGE_DIGEST.getInstance("SHA-512"); digest.update(hashedPrivateKey, FIELD_LEN, FIELD_LEN); digest.update(messageCopy); byte[] r = digest.digest(); reduce(r); byte[] rB = Arrays.copyOfRange(scalarMultWithBase(r).toBytes(), 0, FIELD_LEN); digest.reset(); digest.update(rB); digest.update(publicKey); digest.update(messageCopy); byte[] hram = digest.digest(); reduce(hram); byte[] s = new byte[FIELD_LEN]; mulAdd(s, hram, hashedPrivateKey, r); return Bytes.concat(rB, s); } // The order of the generator as unsigned bytes in little endian order. // (2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed, cf. RFC 7748) static final byte[] GROUP_ORDER = new byte[] { (byte) 0xed, (byte) 0xd3, (byte) 0xf5, (byte) 0x5c, (byte) 0x1a, (byte) 0x63, (byte) 0x12, (byte) 0x58, (byte) 0xd6, (byte) 0x9c, (byte) 0xf7, (byte) 0xa2, (byte) 0xde, (byte) 0xf9, (byte) 0xde, (byte) 0x14, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x10}; // Checks whether s represents an integer smaller than the order of the group. // This is needed to ensure that EdDSA signatures are non-malleable, as failing to check // the range of S allows to modify signatures (cf. RFC 8032, Section 5.2.7 and Section 8.4.) // @param s an integer in little-endian order. private static boolean isSmallerThanGroupOrder(byte[] s) { for (int j = FIELD_LEN - 1; j >= 0; j--) { // compare unsigned bytes int a = s[j] & 0xff; int b = GROUP_ORDER[j] & 0xff; if (a != b) { return a < b; } } return false; }
Returns true if the EdDSA signature with message, can be verified with publicKey.
Throws:
/** * Returns true if the EdDSA {@code signature} with {@code message}, can be verified with * {@code publicKey}. * * @throws GeneralSecurityException if there is no SHA-512 algorithm defined in * {@link EngineFactory}.MESSAGE_DIGEST. */
static boolean verify(final byte[] message, final byte[] signature, final byte[] publicKey) throws GeneralSecurityException { if (signature.length != SIGNATURE_LEN) { return false; } byte[] s = Arrays.copyOfRange(signature, FIELD_LEN, SIGNATURE_LEN); if (!isSmallerThanGroupOrder(s)) { return false; } MessageDigest digest = EngineFactory.MESSAGE_DIGEST.getInstance("SHA-512"); digest.update(signature, 0, FIELD_LEN); digest.update(publicKey); digest.update(message); byte[] h = digest.digest(); reduce(h); XYZT negPublicKey = XYZT.fromBytesNegateVarTime(publicKey); XYZ xyz = doubleScalarMultVarTime(h, negPublicKey, s); byte[] expectedR = xyz.toBytes(); for (int i = 0; i < FIELD_LEN; i++) { if (expectedR[i] != signature[i]) { return false; } } return true; } }