package com.carrotsearch.hppc;

import java.util.*;

import com.carrotsearch.hppc.cursors.*;
import com.carrotsearch.hppc.predicates.*;
import com.carrotsearch.hppc.procedures.*;

import static com.carrotsearch.hppc.HashContainers.*;
import static com.carrotsearch.hppc.Containers.*;

A hash map of Object to float, implemented using open addressing with linear probing for collision resolution.

Note: read about important differences between hash and scatter sets.

See Also:
/** * A hash map of <code>Object</code> to <code>float</code>, implemented using open * addressing with linear probing for collision resolution. * * <p><strong>Note:</strong> read about <a href="{@docRoot}/overview-summary.html#scattervshash">important differences * between hash and scatter sets</a>.</p> * * @see ObjectFloatScatterMap * @see <a href="{@docRoot}/overview-summary.html#interfaces">HPPC interfaces diagram</a> */
@SuppressWarnings("unchecked") @com.carrotsearch.hppc.Generated( date = "2018-05-21T12:24:05+0200", value = "KTypeVTypeHashMap.java") public class ObjectFloatHashMap<KType> implements ObjectFloatMap<KType>, Preallocable, Cloneable {
The array holding keys.
/** * The array holding keys. */
public Object [] keys;
The array holding values.
/** * The array holding values. */
public float [] values;
We perturb hash values with a container-unique seed to avoid problems with nearly-sorted-by-hash values on iterations.
See Also:
  • hashKey
  • http://issues.carrot2.org/browse/HPPC-80
  • http://issues.carrot2.org/browse/HPPC-103
/** * We perturb hash values with a container-unique * seed to avoid problems with nearly-sorted-by-hash * values on iterations. * * @see #hashKey * @see "http://issues.carrot2.org/browse/HPPC-80" * @see "http://issues.carrot2.org/browse/HPPC-103" */
protected int keyMixer;
The number of stored keys (assigned key slots), excluding the special "empty" key, if any (use size() instead).
See Also:
/** * The number of stored keys (assigned key slots), excluding the special * "empty" key, if any (use {@link #size()} instead). * * @see #size() */
protected int assigned;
Mask for slot scans in ObjectFloatHashMap<KType>.keys.
/** * Mask for slot scans in {@link #keys}. */
protected int mask; /** * Expand (rehash) {@link #keys} when {@link #assigned} hits this value. */ protected int resizeAt;
Special treatment for the "empty slot" key marker.
/** * Special treatment for the "empty slot" key marker. */
protected boolean hasEmptyKey;
The load factor for ObjectFloatHashMap<KType>.keys.
/** * The load factor for {@link #keys}. */
protected double loadFactor;
Per-instance hash order mixing strategy.
See Also:
  • keyMixer
/** * Per-instance hash order mixing strategy. * @see #keyMixer */
protected HashOrderMixingStrategy orderMixer;
New instance with sane defaults.
/** * New instance with sane defaults. */
public ObjectFloatHashMap() { this(DEFAULT_EXPECTED_ELEMENTS); }
New instance with sane defaults.
Params:
  • expectedElements – The expected number of elements guaranteed not to cause buffer expansion (inclusive).
/** * New instance with sane defaults. * * @param expectedElements * The expected number of elements guaranteed not to cause buffer * expansion (inclusive). */
public ObjectFloatHashMap(int expectedElements) { this(expectedElements, DEFAULT_LOAD_FACTOR); }
New instance with sane defaults.
Params:
  • expectedElements – The expected number of elements guaranteed not to cause buffer expansion (inclusive).
  • loadFactor – The load factor for internal buffers. Insane load factors (zero, full capacity) are rejected by verifyLoadFactor(double).
/** * New instance with sane defaults. * * @param expectedElements * The expected number of elements guaranteed not to cause buffer * expansion (inclusive). * @param loadFactor * The load factor for internal buffers. Insane load factors (zero, full capacity) * are rejected by {@link #verifyLoadFactor(double)}. */
public ObjectFloatHashMap(int expectedElements, double loadFactor) { this(expectedElements, loadFactor, HashOrderMixing.defaultStrategy()); }
New instance with the provided defaults.
Params:
  • expectedElements – The expected number of elements guaranteed not to cause a rehash (inclusive).
  • loadFactor – The load factor for internal buffers. Insane load factors (zero, full capacity) are rejected by verifyLoadFactor(double).
  • orderMixer – Hash key order mixing strategy. See HashOrderMixing for predefined implementations. Use constant mixers only if you understand the potential consequences.
/** * New instance with the provided defaults. * * @param expectedElements * The expected number of elements guaranteed not to cause a rehash (inclusive). * @param loadFactor * The load factor for internal buffers. Insane load factors (zero, full capacity) * are rejected by {@link #verifyLoadFactor(double)}. * @param orderMixer * Hash key order mixing strategy. See {@link HashOrderMixing} for predefined * implementations. Use constant mixers only if you understand the potential * consequences. */
public ObjectFloatHashMap(int expectedElements, double loadFactor, HashOrderMixingStrategy orderMixer) { this.orderMixer = orderMixer; this.loadFactor = verifyLoadFactor(loadFactor); ensureCapacity(expectedElements); }
Create a hash map from all key-value pairs of another container.
/** * Create a hash map from all key-value pairs of another container. */
public ObjectFloatHashMap(ObjectFloatAssociativeContainer<? extends KType> container) { this(container.size()); putAll(container); }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float put(KType key, float value) { assert assigned < mask + 1; final int mask = this.mask; if (((key) == null)) { hasEmptyKey = true; float previousValue = values[mask + 1]; values[mask + 1] = value; return previousValue; } else { final KType[] keys = (KType[]) this.keys; int slot = hashKey(key) & mask; KType existing; while (!((existing = keys[slot]) == null)) { if (this.equals(existing, key)) { final float previousValue = values[slot]; values[slot] = value; return previousValue; } slot = (slot + 1) & mask; } if (assigned == resizeAt) { allocateThenInsertThenRehash(slot, key, value); } else { keys[slot] = key; values[slot] = value; } assigned++; return 0f; } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int putAll(ObjectFloatAssociativeContainer<? extends KType> container) { final int count = size(); for (ObjectFloatCursor<? extends KType> c : container) { put(c.key, c.value); } return size() - count; }
Puts all key/value pairs from a given iterable into this map.
/** * Puts all key/value pairs from a given iterable into this map. */
@Override public int putAll(Iterable<? extends ObjectFloatCursor<? extends KType>> iterable){ final int count = size(); for (ObjectFloatCursor<? extends KType> c : iterable) { put(c.key, c.value); } return size() - count; }
Trove-inspired API method. An equivalent of the following code:
if (!map.containsKey(key)) map.put(value);
Params:
  • key – The key of the value to check.
  • value – The value to put if key does not exist.
Returns:true if key did not exist and value was placed in the map.
/** * <a href="http://trove4j.sourceforge.net">Trove</a>-inspired API method. An equivalent * of the following code: * <pre> * if (!map.containsKey(key)) map.put(value); * </pre> * * @param key The key of the value to check. * @param value The value to put if <code>key</code> does not exist. * @return <code>true</code> if <code>key</code> did not exist and <code>value</code> * was placed in the map. */
public boolean putIfAbsent(KType key, float value) { int keyIndex = indexOf(key); if (!indexExists(keyIndex)) { indexInsert(keyIndex, key, value); return true; } else { return false; } }
If key exists, putValue is inserted into the map, otherwise any existing value is incremented by additionValue.
Params:
  • key – The key of the value to adjust.
  • putValue – The value to put if key does not exist.
  • incrementValue – The value to add to the existing value if key exists.
Returns:Returns the current value associated with key (after changes).
/** * If <code>key</code> exists, <code>putValue</code> is inserted into the map, * otherwise any existing value is incremented by <code>additionValue</code>. * * @param key * The key of the value to adjust. * @param putValue * The value to put if <code>key</code> does not exist. * @param incrementValue * The value to add to the existing value if <code>key</code> exists. * @return Returns the current value associated with <code>key</code> (after * changes). */
@Override public float putOrAdd(KType key, float putValue, float incrementValue) { assert assigned < mask + 1; int keyIndex = indexOf(key); if (indexExists(keyIndex)) { putValue = ((float) (( values[keyIndex]) + (incrementValue))); indexReplace(keyIndex, putValue); } else { indexInsert(keyIndex, key, putValue); } return putValue; }
Adds incrementValue to any existing value for the given key or inserts incrementValue if key did not previously exist.
Params:
  • key – The key of the value to adjust.
  • incrementValue – The value to put or add to the existing value if key exists.
Returns:Returns the current value associated with key (after changes).
/** * Adds <code>incrementValue</code> to any existing value for the given <code>key</code> * or inserts <code>incrementValue</code> if <code>key</code> did not previously exist. * * @param key The key of the value to adjust. * @param incrementValue The value to put or add to the existing value if <code>key</code> exists. * @return Returns the current value associated with <code>key</code> (after changes). */
@Override public float addTo(KType key, float incrementValue) { return putOrAdd(key, incrementValue, incrementValue); }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float remove(KType key) { final int mask = this.mask; if (((key) == null)) { hasEmptyKey = false; float previousValue = values[mask + 1]; values[mask + 1] = 0f; return previousValue; } else { final KType[] keys = (KType[]) this.keys; int slot = hashKey(key) & mask; KType existing; while (!((existing = keys[slot]) == null)) { if (this.equals(existing, key)) { final float previousValue = values[slot]; shiftConflictingKeys(slot); return previousValue; } slot = (slot + 1) & mask; } return 0f; } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int removeAll(ObjectContainer<? super KType> other) { final int before = size(); // Try to iterate over the smaller set of values or // over the container that isn't implementing // efficient contains() lookup. if (other.size() >= size() && other instanceof ObjectLookupContainer<?>) { if (hasEmptyKey) { if (other.contains(null)) { hasEmptyKey = false; values[mask + 1] = 0f; } } final KType[] keys = (KType[]) this.keys; for (int slot = 0, max = this.mask; slot <= max;) { KType existing; if (!((existing = keys[slot]) == null) && other.contains(existing)) { // Shift, do not increment slot. shiftConflictingKeys(slot); } else { slot++; } } } else { for (ObjectCursor<?> c : other) { this.remove((KType) c.value); } } return before - size(); }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int removeAll(ObjectFloatPredicate<? super KType> predicate) { final int before = size(); final int mask = this.mask; if (hasEmptyKey) { if (predicate.apply(null, values[mask + 1])) { hasEmptyKey = false; values[mask + 1] = 0f; } } final KType[] keys = (KType[]) this.keys; final float[] values = this.values; for (int slot = 0; slot <= mask;) { KType existing; if (!((existing = keys[slot]) == null) && predicate.apply(existing, values[slot])) { // Shift, do not increment slot. shiftConflictingKeys(slot); } else { slot++; } } return before - size(); }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int removeAll(ObjectPredicate<? super KType> predicate) { final int before = size(); if (hasEmptyKey) { if (predicate.apply(null)) { hasEmptyKey = false; values[mask + 1] = 0f; } } final KType[] keys = (KType[]) this.keys; for (int slot = 0, max = this.mask; slot <= max;) { KType existing; if (!((existing = keys[slot]) == null) && predicate.apply(existing)) { // Shift, do not increment slot. shiftConflictingKeys(slot); } else { slot++; } } return before - size(); }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float get(KType key) { if (((key) == null)) { return hasEmptyKey ? values[mask + 1] : 0f; } else { final KType[] keys = (KType[]) this.keys; final int mask = this.mask; int slot = hashKey(key) & mask; KType existing; while (!((existing = keys[slot]) == null)) { if (this.equals(existing, key)) { return values[slot]; } slot = (slot + 1) & mask; } return 0f; } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float getOrDefault(KType key, float defaultValue) { if (((key) == null)) { return hasEmptyKey ? values[mask + 1] : defaultValue; } else { final KType[] keys = (KType[]) this.keys; final int mask = this.mask; int slot = hashKey(key) & mask; KType existing; while (!((existing = keys[slot]) == null)) { if (this.equals(existing, key)) { return values[slot]; } slot = (slot + 1) & mask; } return defaultValue; } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public boolean containsKey(KType key) { if (((key) == null)) { return hasEmptyKey; } else { final KType[] keys = (KType[]) this.keys; final int mask = this.mask; int slot = hashKey(key) & mask; KType existing; while (!((existing = keys[slot]) == null)) { if (this.equals(existing, key)) { return true; } slot = (slot + 1) & mask; } return false; } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int indexOf(KType key) { final int mask = this.mask; if (((key) == null)) { return hasEmptyKey ? mask + 1 : ~(mask + 1); } else { final KType[] keys = (KType[]) this.keys; int slot = hashKey(key) & mask; KType existing; while (!((existing = keys[slot]) == null)) { if (this.equals(existing, key)) { return slot; } slot = (slot + 1) & mask; } return ~slot; } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public boolean indexExists(int index) { assert index < 0 || (index >= 0 && index <= mask) || (index == mask + 1 && hasEmptyKey); return index >= 0; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float indexGet(int index) { assert index >= 0 : "The index must point at an existing key."; assert index <= mask || (index == mask + 1 && hasEmptyKey); return values[index]; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public float indexReplace(int index, float newValue) { assert index >= 0 : "The index must point at an existing key."; assert index <= mask || (index == mask + 1 && hasEmptyKey); float previousValue = values[index]; values[index] = newValue; return previousValue; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public void indexInsert(int index, KType key, float value) { assert index < 0 : "The index must not point at an existing key."; index = ~index; if (((key) == null)) { assert index == mask + 1; values[index] = value; hasEmptyKey = true; } else { assert ((keys[index]) == null); if (assigned == resizeAt) { allocateThenInsertThenRehash(index, key, value); } else { keys[index] = key; values[index] = value; } assigned++; } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public void clear() { assigned = 0; hasEmptyKey = false; Arrays.fill(keys, null); /* */ }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public void release() { assigned = 0; hasEmptyKey = false; keys = null; values = null; ensureCapacity(Containers.DEFAULT_EXPECTED_ELEMENTS); }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int size() { return assigned + (hasEmptyKey ? 1 : 0); }
{@inheritDoc}
/** * {@inheritDoc} */
public boolean isEmpty() { return size() == 0; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public int hashCode() { int h = hasEmptyKey ? 0xDEADBEEF : 0; for (ObjectFloatCursor<KType> c : this) { h += BitMixer.mix(c.key) + BitMixer.mix(c.value); } return h; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public boolean equals(Object obj) { return obj != null && getClass() == obj.getClass() && equalElements(getClass().cast(obj)); }
Return true if all keys of some other container exist in this container. Equality comparison is performed with this object's equals(Object, Object) method.
/** * Return true if all keys of some other container exist in this container. * Equality comparison is performed with this object's {@link #equals(Object, Object)} * method. */
protected boolean equalElements(ObjectFloatHashMap<?> other) { if (other.size() != size()) { return false; } for (ObjectFloatCursor<?> c : other) { KType key = (KType) c.key; if (!containsKey(key) || !(Float.floatToIntBits(get(key)) == Float.floatToIntBits(c.value))) { return false; } } return true; }
Ensure this container can hold at least the given number of keys (entries) without resizing its buffers.
Params:
  • expectedElements – The total number of keys, inclusive.
/** * Ensure this container can hold at least the * given number of keys (entries) without resizing its buffers. * * @param expectedElements The total number of keys, inclusive. */
@Override public void ensureCapacity(int expectedElements) { if (expectedElements > resizeAt || keys == null) { final KType[] prevKeys = (KType[]) this.keys; final float[] prevValues = this.values; allocateBuffers(minBufferSize(expectedElements, loadFactor)); if (prevKeys != null && !isEmpty()) { rehash(prevKeys, prevValues); } } }
An iterator implementation for ObjectFloatHashMap<KType>.iterator.
/** * An iterator implementation for {@link #iterator}. */
private final class EntryIterator extends AbstractIterator<ObjectFloatCursor<KType>> { private final ObjectFloatCursor<KType> cursor; private final int max = mask + 1; private int slot = -1; public EntryIterator() { cursor = new ObjectFloatCursor<KType>(); } @Override protected ObjectFloatCursor<KType> fetch() { if (slot < max) { KType existing; for (slot++; slot < max; slot++) { if (!((existing = (KType) keys[slot]) == null)) { cursor.index = slot; cursor.key = existing; cursor.value = values[slot]; return cursor; } } } if (slot == max && hasEmptyKey) { cursor.index = slot; cursor.key = null; cursor.value = values[max]; slot++; return cursor; } return done(); } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public Iterator<ObjectFloatCursor<KType>> iterator() { return new EntryIterator(); }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public <T extends ObjectFloatProcedure<? super KType>> T forEach(T procedure) { final KType[] keys = (KType[]) this.keys; final float[] values = this.values; if (hasEmptyKey) { procedure.apply(null, values[mask + 1]); } for (int slot = 0, max = this.mask; slot <= max; slot++) { if (!((keys[slot]) == null)) { procedure.apply(keys[slot], values[slot]); } } return procedure; }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public <T extends ObjectFloatPredicate<? super KType>> T forEach(T predicate) { final KType[] keys = (KType[]) this.keys; final float[] values = this.values; if (hasEmptyKey) { if (!predicate.apply(null, values[mask + 1])) { return predicate; } } for (int slot = 0, max = this.mask; slot <= max; slot++) { if (!((keys[slot]) == null)) { if (!predicate.apply(keys[slot], values[slot])) { break; } } } return predicate; }
Returns a specialized view of the keys of this associated container. The view additionally implements ObjectLookupContainer.
/** * Returns a specialized view of the keys of this associated container. The * view additionally implements {@link ObjectLookupContainer}. */
public KeysContainer keys() { return new KeysContainer(); }
A view of the keys inside this hash map.
/** * A view of the keys inside this hash map. */
public final class KeysContainer extends AbstractObjectCollection<KType> implements ObjectLookupContainer<KType> { private final ObjectFloatHashMap<KType> owner = ObjectFloatHashMap.this; @Override public boolean contains(KType e) { return owner.containsKey(e); } @Override public <T extends ObjectProcedure<? super KType>> T forEach(final T procedure) { owner.forEach(new ObjectFloatProcedure<KType>() { @Override public void apply(KType key, float value) { procedure.apply(key); } }); return procedure; } @Override public <T extends ObjectPredicate<? super KType>> T forEach(final T predicate) { owner.forEach(new ObjectFloatPredicate<KType>() { @Override public boolean apply(KType key, float value) { return predicate.apply(key); } }); return predicate; } @Override public boolean isEmpty() { return owner.isEmpty(); } @Override public Iterator<ObjectCursor<KType>> iterator() { return new KeysIterator(); } @Override public int size() { return owner.size(); } @Override public void clear() { owner.clear(); } @Override public void release() { owner.release(); } @Override public int removeAll(ObjectPredicate<? super KType> predicate) { return owner.removeAll(predicate); } @Override public int removeAll(final KType e) { final boolean hasKey = owner.containsKey(e); if (hasKey) { owner.remove(e); return 1; } else { return 0; } } };
An iterator over the set of assigned keys.
/** * An iterator over the set of assigned keys. */
private final class KeysIterator extends AbstractIterator<ObjectCursor<KType>> { private final ObjectCursor<KType> cursor; private final int max = mask + 1; private int slot = -1; public KeysIterator() { cursor = new ObjectCursor<KType>(); } @Override protected ObjectCursor<KType> fetch() { if (slot < max) { KType existing; for (slot++; slot < max; slot++) { if (!((existing = (KType) keys[slot]) == null)) { cursor.index = slot; cursor.value = existing; return cursor; } } } if (slot == max && hasEmptyKey) { cursor.index = slot; cursor.value = null; slot++; return cursor; } return done(); } }
Returns:Returns a container with all values stored in this map.
/** * @return Returns a container with all values stored in this map. */
@Override public FloatCollection values() { return new ValuesContainer(); }
A view over the set of values of this map.
/** * A view over the set of values of this map. */
private final class ValuesContainer extends AbstractFloatCollection { private final ObjectFloatHashMap<KType> owner = ObjectFloatHashMap.this; @Override public int size() { return owner.size(); } @Override public boolean isEmpty() { return owner.isEmpty(); } @Override public boolean contains(float value) { for (ObjectFloatCursor<KType> c : owner) { if ((Float.floatToIntBits(c.value) == Float.floatToIntBits(value))) { return true; } } return false; } @Override public <T extends FloatProcedure> T forEach(T procedure) { for (ObjectFloatCursor<KType> c : owner) { procedure.apply(c.value); } return procedure; } @Override public <T extends FloatPredicate> T forEach(T predicate) { for (ObjectFloatCursor<KType> c : owner) { if (!predicate.apply(c.value)) { break; } } return predicate; } @Override public Iterator<FloatCursor> iterator() { return new ValuesIterator(); } @Override public int removeAll(final float e) { return owner.removeAll(new ObjectFloatPredicate<KType>() { @Override public boolean apply(KType key, float value) { return (Float.floatToIntBits(value) == Float.floatToIntBits(e)); } }); } @Override public int removeAll(final FloatPredicate predicate) { return owner.removeAll(new ObjectFloatPredicate<KType>() { @Override public boolean apply(KType key, float value) { return predicate.apply(value); } }); } @Override public void clear() { owner.clear(); } @Override public void release() { owner.release(); } }
An iterator over the set of assigned values.
/** * An iterator over the set of assigned values. */
private final class ValuesIterator extends AbstractIterator<FloatCursor> { private final FloatCursor cursor; private final int max = mask + 1; private int slot = -1; public ValuesIterator() { cursor = new FloatCursor(); } @Override protected FloatCursor fetch() { if (slot < max) { for (slot++; slot < max; slot++) { if (!(((KType) keys[slot]) == null)) { cursor.index = slot; cursor.value = values[slot]; return cursor; } } } if (slot == max && hasEmptyKey) { cursor.index = slot; cursor.value = values[max]; slot++; return cursor; } return done(); } }
{@inheritDoc}
/** * {@inheritDoc} */
@Override public ObjectFloatHashMap<KType> clone() { try { /* */ ObjectFloatHashMap<KType> cloned = (ObjectFloatHashMap<KType>) super.clone(); cloned.keys = keys.clone(); cloned.values = values.clone(); cloned.hasEmptyKey = cloned.hasEmptyKey; cloned.orderMixer = orderMixer.clone(); return cloned; } catch (CloneNotSupportedException e) { throw new RuntimeException(e); } }
Convert the contents of this map to a human-friendly string.
/** * Convert the contents of this map to a human-friendly string. */
@Override public String toString() { final StringBuilder buffer = new StringBuilder(); buffer.append("["); boolean first = true; for (ObjectFloatCursor<KType> cursor : this) { if (!first) { buffer.append(", "); } buffer.append(cursor.key); buffer.append("=>"); buffer.append(cursor.value); first = false; } buffer.append("]"); return buffer.toString(); } @Override public String visualizeKeyDistribution(int characters) { return ObjectBufferVisualizer.visualizeKeyDistribution(keys, mask, characters); }
Creates a hash map from two index-aligned arrays of key-value pairs.
/** * Creates a hash map from two index-aligned arrays of key-value pairs. */
public static <KType> ObjectFloatHashMap<KType> from(KType[] keys, float[] values) { if (keys.length != values.length) { throw new IllegalArgumentException("Arrays of keys and values must have an identical length."); } ObjectFloatHashMap<KType> map = new ObjectFloatHashMap<>(keys.length); for (int i = 0; i < keys.length; i++) { map.put(keys[i], values[i]); } return map; }
Returns a hash code for the given key.

The default implementation mixes the hash of the key with ObjectFloatHashMap<KType>.keyMixer to differentiate hash order of keys between hash containers. Helps alleviate problems resulting from linear conflict resolution in open addressing.

The output from this function should evenly distribute keys across the entire integer range.

/** * Returns a hash code for the given key. * * <p>The default implementation mixes the hash of the key with {@link #keyMixer} * to differentiate hash order of keys between hash containers. Helps * alleviate problems resulting from linear conflict resolution in open * addressing.</p> * * <p>The output from this function should evenly distribute keys across the * entire integer range.</p> */
protected int hashKey(KType key) { assert !((key) == null); // Handled as a special case (empty slot marker). return BitMixer.mix(key, this.keyMixer); }
Validate load factor range and return it. Override and suppress if you need insane load factors.
/** * Validate load factor range and return it. Override and suppress if you need * insane load factors. */
protected double verifyLoadFactor(double loadFactor) { checkLoadFactor(loadFactor, MIN_LOAD_FACTOR, MAX_LOAD_FACTOR); return loadFactor; }
Rehash from old buffers to new buffers.
/** * Rehash from old buffers to new buffers. */
protected void rehash(KType[] fromKeys, float[] fromValues) { assert fromKeys.length == fromValues.length && HashContainers.checkPowerOfTwo(fromKeys.length - 1); // Rehash all stored key/value pairs into the new buffers. final KType[] keys = (KType[]) this.keys; final float[] values = this.values; final int mask = this.mask; KType existing; // Copy the zero element's slot, then rehash everything else. int from = fromKeys.length - 1; keys[keys.length - 1] = fromKeys[from]; values[values.length - 1] = fromValues[from]; while (--from >= 0) { if (!((existing = fromKeys[from]) == null)) { int slot = hashKey(existing) & mask; while (!((keys[slot]) == null)) { slot = (slot + 1) & mask; } keys[slot] = existing; values[slot] = fromValues[from]; } } }
Allocate new internal buffers. This method attempts to allocate and assign internal buffers atomically (either allocations succeed or not).
/** * Allocate new internal buffers. This method attempts to allocate * and assign internal buffers atomically (either allocations succeed or not). */
protected void allocateBuffers(int arraySize) { assert Integer.bitCount(arraySize) == 1; // Compute new hash mixer candidate before expanding. final int newKeyMixer = this.orderMixer.newKeyMixer(arraySize); // Ensure no change is done if we hit an OOM. KType[] prevKeys = (KType[]) this.keys; float[] prevValues = this.values; try { int emptyElementSlot = 1; this.keys = ((KType[]) new Object [arraySize + emptyElementSlot]); this.values = (new float [arraySize + emptyElementSlot]); } catch (OutOfMemoryError e) { this.keys = prevKeys; this.values = prevValues; throw new BufferAllocationException( "Not enough memory to allocate buffers for rehashing: %,d -> %,d", e, this.mask + 1, arraySize); } this.resizeAt = expandAtCount(arraySize, loadFactor); this.keyMixer = newKeyMixer; this.mask = arraySize - 1; }
This method is invoked when there is a new key/ value pair to be inserted into the buffers but there is not enough empty slots to do so. New buffers are allocated. If this succeeds, we know we can proceed with rehashing so we assign the pending element to the previous buffer (possibly violating the invariant of having at least one empty slot) and rehash all keys, substituting new buffers at the end.
/** * This method is invoked when there is a new key/ value pair to be inserted into * the buffers but there is not enough empty slots to do so. * * New buffers are allocated. If this succeeds, we know we can proceed * with rehashing so we assign the pending element to the previous buffer * (possibly violating the invariant of having at least one empty slot) * and rehash all keys, substituting new buffers at the end. */
protected void allocateThenInsertThenRehash(int slot, KType pendingKey, float pendingValue) { assert assigned == resizeAt && (((KType) keys[slot]) == null) && !((pendingKey) == null); // Try to allocate new buffers first. If we OOM, we leave in a consistent state. final KType[] prevKeys = (KType[]) this.keys; final float[] prevValues = this.values; allocateBuffers(nextBufferSize(mask + 1, size(), loadFactor)); assert this.keys.length > prevKeys.length; // We have succeeded at allocating new data so insert the pending key/value at // the free slot in the old arrays before rehashing. prevKeys[slot] = pendingKey; prevValues[slot] = pendingValue; // Rehash old keys, including the pending key. rehash(prevKeys, prevValues); }
Shift all the slot-conflicting keys and values allocated to (and including) slot.
/** * Shift all the slot-conflicting keys and values allocated to * (and including) <code>slot</code>. */
protected void shiftConflictingKeys(int gapSlot) { final KType[] keys = (KType[]) this.keys; final float[] values = this.values; final int mask = this.mask; // Perform shifts of conflicting keys to fill in the gap. int distance = 0; while (true) { final int slot = (gapSlot + (++distance)) & mask; final KType existing = keys[slot]; if (((existing) == null)) { break; } final int idealSlot = hashKey(existing); final int shift = (slot - idealSlot) & mask; if (shift >= distance) { // Entry at this position was originally at or before the gap slot. // Move the conflict-shifted entry to the gap's position and repeat the procedure // for any entries to the right of the current position, treating it // as the new gap. keys[gapSlot] = existing; values[gapSlot] = values[slot]; gapSlot = slot; distance = 0; } } // Mark the last found gap slot without a conflict as empty. keys[gapSlot] = null; values[gapSlot] = 0f; assigned--; } protected boolean equals(Object v1, Object v2) { return (v1 == v2) || (v1 != null && v1.equals(v2)); } }